P4,

zeegee

SSSSSSS

A Crash Course in

Perl5

Part 2: Patterns

Zeegee Software Inc.
http://www.zeegee.com/

http://www.zeegee.com/

Terms and Conditions

These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-2

Road map

* Basics * Flow control
— Introduction — Program structures
— Perl syntax — Subroutines
— Basic data types — References
— Basic operators — Error handling
» Patterns * Data
— Introduction — Input and output
— String matching and modifying — Binary data
— Pattern variables — Special variables
* Data structures * Object-oriented programming
— LISTs and arrays — Modules
— Context — Objects
— Hashes — Inheritance
— Tying

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-3

Patterns

Introduction

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-4

Patterns / Introduction

What are they?

* A way of matching a text string ($_ by default) against
some template, usually for the purpose of...

— Extracting information from the string
— "Editing" portions of the string

* Perl patterns are regular-expressions, which have a
well-established syntax in the Unix world: used by sed,
awk, grep, Emacs, etc...

M. Integrated right into the Perl language itself
AN
Y

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 -5

Patterns / Introduction

What do they look like?

* In Perl, patterns usually delimited by / /.

* Any single character matches itself, unless it is a
metacharacter with a special meaning...

Metacharacter(s) Meaning

A Match beginning of line/string
S Match end of line/string
Match any single character (except newline)
\ Quote the next metacharacter
[] Character class...
() Grouping...
| Alternation ("or")...
*, 4+, 2, {} Quantifiers ("repeat")...

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 -6

Patterns / Introduction

Some simple examples

Expression
/log/

/"~1og/

/1log$/

/~Log$/
/"bi.$/
/"w.r./

Copyright © 1996, 2000 Zeegee Software Inc.

Matches...

All strings that contain "log", like c1ogged or
logarithm or just plain 1og

All strings that start with "log", like 1ogical or
logarithm or just plain 1og

All strings that end with "log", like starlog
The string Log (case-sensitive)
Three-letter strings beginning with b1, like bit

Strings of at least 4 characters, with w as the first
character and r as the third, like worst or warp

11/15/08 A Crash Course in Perl5 |-7

Patterns / Introduction

Character classes

* If you enclose a list of characters inside [], the
construct will match any single character in the list:

/"blael]ts/ Matches strings bat, bet, or bit
o Starting it with [~ negates the class:

/"b[raei]tS/ Matches bXt, b9t,and b! t...
but not bat, bet,orbit

* Within the list, a — defines a range:

/"b[A-21-9]1tS/ Matches bAt, bBt, ..., blt, ..., b9t

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-8

Patterns / Introduction

EXERCISES

Write a pattern which only matches strings...

|. ...that contain at least one lowercase vowel
(a, &, i, 0, or u).

2. ..that contain at least one lowercase letter which
is not a vowel.

3. ...which are 2-digit hexidecimal numbers.

4. ..which are five letters, beginning and ending in
either E or e.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-9

Patterns / Introduction

Grouping

* Patterns are made up of smaller subpatterns, to be
matched from left to right.

* The smallest pattern is a single character or
metacharacter:

/"W.r./ A pattern made up of 5 subpatterns

* Grouping defines subpatterns within the pattern that
consist of more than one character. It is done with
parentheses ():

/N (W.r) ./ A pattern made up of 3 subpatterns

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-10

Patterns / Introduction

Alternation

* You can have one of your subpatterns specify several
possible alternatives to match against, using the | :

/~"f(eelilo|um)$/ Matches fee, £i, fo, or fum

* If the outermost subpattern is an alternation, you can
drop the parentheses:

/ ("A|AS) / Matches strings that start or end in A
/"A|AS/ Ditto

/™ (ho|hum) S/ Matches "ho" or "hum"
/~ho |hum$S/ WRONG! Not the same!

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-11

Patterns / Introduction

Quantifiers

* Quantifiers are metacharacters indicating that text

matching the previous subpattern must/may be repeated
a given number of times:

Quantifier Example Meaning

* ax* Match O or more times

+ a+ Match | or more times

? a? Match O or | times

{n} a{3} Match exactly n times

{n,} a{3,} Match at least n times

{n,m} a{3,5} Match at least n but no more than m times

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-12

Patterns / Introduction

Examples with quantifiers

Expression Matches...

/"~ smo+/ All strings that begin with "sm" followed by | or
more 0's, like smother or smooth or
sSmoooooooooch!

/ma*il/ All strings that contain an "m" followed by 0 or more
a's and then "il", like m11 or email or maaaaail

/" ma?ils/ The strings mil and mail

/["~o] (oo)+S/ All strings (except 00) that end with an even number

of 0's, like moo or moooo or wooo—-hoooooo
/" mo{l,3}nS/ The strings mon, moon, and mooon

/"~ (Mo{2,})+$/ Any strings consisting of one or more reptitions of
IMo{2,}/, likke MooMoooMooooMooMooOOOO

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-13

Patterns / Introduction

Non-greedy quantifiers

* How would you match a C-style comment, like
/* this */! Here's a typical first try:

AVASIINAVY NO!

* That seems to work... but the .* is greedy: it matches as
many characters as possible, which can be a problem:

/* do it */ x = 1; /* done */

* Non-greedy quantifiers match as few characters as
possible. Just put a "?" after the * or + quantifier:

VANV

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-14

Patterns / Introduction

Escape sequences

* Patterns are processed like double-quoted strings,
so all the normal \-escapes work: \n, \t, \0377, \L, etc.

 Additionally, Perl defines the following:

Metacharacter Meaning

\w Match a "word" character (alphanumeric plus " ")
\W Match a non-word character

\'s Match a whitespace character

\'S Match a non-whitespace character

\d Match a digit character (0-9)

\D Match a non-digit character

* All the above may be used inside character classes

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-15

Patterns / Introduction

Escaping the //

* Remember that the // which delimits a pattern can
create problems for you, since you can't have a bare "/"
inside the pattern!

* One way around this is to escape every "/" as "\/".

* When matching against URLs or Unix filenames, this can
result in "leaning toothpick syndrome..."

Match files in /usr/local/bin...
/™\/usr\/local\/bin\/.+S/

* Later on we'll see a better way to write this...

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-16

Patterns / Introduction

Zero-width assertions

* Perl also defines the following escape sequences for
zero-width assertions (meaning they don't match
actual characters):

Metacharacter = Meaning

\b Match a word-boundary (between a \w and a \W)
(within character classes, matches a backspace)

\B Match a non-word-boundary

\A Match only at beginning of string (not at lines)

\7Z Match only at end of string (not at lines)

\G Match only where previous m/ /g left off

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-17

Patterns / Introduction

Interpolating variables

* Variable interpolation works, just like in "-strings:
/ab$ {subpat}cds/ As if Ssubpat were actually there

* The pattern must be legal after interpolation... if the
variable can contain metacharacters, use \Q and \E:

Sunsafe = "*You* + me???";

/"\Q$unsafe\ES/ Safely matches against Sunsafe

& Interpolation will cause the pattern to be recompiled
each time it's encountered... very time consuming! You
might want to use the /o maodifier...

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-18

Patterns / Introduction

Modifiers

* To alter the way pattern matching is performed, you can
suffix the pattern with any/many of these modifiers:

Modifier Meaning
i Do case-insensitive pattern matching
m Treat string as multiple lines
O Only compile once, after first interpolation
S Treat string as a single line
X Use extended regular expressions (whitespace and
commas allowed!)
e Example: /Swarp/iom

e Let's examine them in detail...

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-19

Patterns / Introduction / Modifiers

The /i modifier

* Putting /i after a pattern makes all matching case-
insensitive:

/"warpS/ Matches warp only
/"warps/i Matches warp or WARP or wArP

* This even extends to variables which were interpolated
to make the pattern:

Svar = "WarP";
/~Svars/i Matches warp or WARP or wArP

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-20

Patterns / Introduction / Modifiers

The /o modifier

& Patterns which contain a variable interpolation are
compiled each time they're encountered, since the
variable might have changed. This is expensive, and may

be needless!
Sname = "Fred";
while (<STDIN>) { # for each input line

print "Match!" if /$name/o;

}

* Putting /o after a pattern means tells Perl to only
compile it once, the first time it is encountered. This
is much more efficient!

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-21

Patterns / Introduction / Modifiers

The /s modifier

* The . (dot) metacharacter never matches a newline
unless you use the /s (single-line) modifier.

* This tells Perl to pretend that the string is a single line,
so "dot" will match any character, including newline:

$ = "does\n before\n precede\n after?\n";
if (/before.*after/) { ... } # fails
if (/before.*after/s) { ... } # succeeds

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-22

Patterns / Introduction / Modifiers

The /m modifiers

* Normally, we think of a string as a single line.

* By default, * only matches at the beginning of a string,
and $ at the end of a string (or before a newline at the
end). Embedded newlines will not be matched.

* The Im (multi-line) modifier says that * should also

match after any newline, and $ should also match before
any newline.

= "From: me\nSubject: Hi\nTo: you\n";
f (/"Subject: /m) { # succeeds
print "I found a Subject: line!\n";

S
i

}

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-23

Patterns / Introduction

EXERCISES

|. Write a pattern that matches any strings which break
the rule "i before e, except after c".

2. Write a pattern which matches all strings that contain
at least one double-letter; e.g., book, crass, llama, etc.

3. Write a pattern that matches strings which are FTP or
HTTP URLs for the hostname in $host.

4. Same as above, but only match ones which point to files
witha .htm or .html extension.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-24

Patterns

String match & modify

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-25

Patterns / String match & modify

"Binding” operators

 Certain operations match or modify the scalar S by

default. The binary binding operators make them
work on another string:

— Left argument is the scalar to be matched/modified
— Right argument is the pattern/substitution/translation

— Return value indicates success of operation

$a =~ EXPR Indicates that you want to match/modify string
$a against the given EXPRession

$a !~ EXPR Same, but the return value is logically negated

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-26

Patterns / String match & modify

Anatomy of an m// command

Pattern

|

Modifiers

|

m/\d{3}-\d{4}/gi;

m{\d{3}-\d{4}}gi;

Copyright © 1996, 2000 Zeegee Software Inc. I1/15/08

A Crash Course in Perl5 1-27

Patterns / String match & modify

Matching with m//

* To see if a scalar matches a given PATTERN, use the
m// operator:

Splank = 1 1if 8x =~ m/"\s*$/;

* The leading m is optional if using // as delimiters:

Sblank = 1 if 8x =~ /"\s*$/;

* Remember, the default string is $:

Spblank = 1 1if [/~\s*$/;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-28

Patterns / String match & modify

Extracting subpattern matches

* When using m/ /, text matching any ()-delimited subpatterns
is placed in the variables $1, $2, ..., where each Sn
corresponds to the group beginning with the nth left-paren:

Is $phone of the form "912-867-5309"?

if (Sphone =~ /7~ (\d{3})-(\d{3}-\d{4})S/) {
(Sareacode, S$Snumber) = ($1, S$2);

}

e Sincem// returns ($1,32,..,5n), we can shorten that to:

(Sareacode, S$number) =

($phone =~ /~(\d{3})-(\d{3}-\d{4})s/);

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-29

Patterns / String match & modify

Options to m//

* To alter the way pattern matching is performed, you can
suffix the m// pattern with any/many of these modifiers:

Modifier Meaning
i,m,0,s,x As previously discussed
g Match globally; e.g., find all occurrences

* For example:

SMaxWarp = 9; # assume this is a "constant"

If ($Sspeed =~ [/"warp S$MaxWarp$/io) {
could be "WARP 9" or "wArP 9" or ...

}

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-30

Patterns / String match & modify

The m//g modifier

* Putting /g (global) after a m// pattern allows you to
match inside a while loop, until done:

Extract all integers from $:
while (m/(\d+)/g) {

print "found $1 before pos ", pos($), "\n";
}

* Expression returns true if there was a match, false if not,
and moves the "match position" along.

* You can use pos() to explicitly get/set the "match
position” in the string being matched against.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-31

Patterns / String match & modify

Anatomy of an s/// command

Pattern | | Replacement

Modifiers

|

|

s/Bond/007/g1i;

s{Bond} {007}qgz1;

Copyright © 1996, 2000 Zeegee Software Inc. I1/15/08

A Crash Course in Perl5 [-32

Patterns / String match & modify

Search/replace with s///

* To modify a scalar, use the s/// operator:

s/\s// # Remove first whitespace char
s/\s//g # Remove all whitespace chars

s/ "\s+|\s+$//g # Remove lead/trail whitespace
s/0/1/ # Change first O to a |

s/0/1/g # Change all Os to Is
s/\bteh\b/the/iqg # Fix all occurrences of word "teh"
s/Dr. (\S+)/$1, M.D./g; # Turn "Dr. X"into "X, M.D."

* Returns number of substitutions made (true), or 0 (false)
if no matches were found.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-33

Patterns / String match & modify

Using subpatterns in s///

e Asin m//, text matching any ()-delimited subpattern of the
pattern is placed in variables $1, $2, ..., where each $n
corresponds to the group beginning with the nth left-paren.

* Those variables can be used the in the replacement to
switch things around:

Change "x loves y" to "y loves x"...
s/ (\S+) loves (\S+)/$2 loves $1/g;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-34

Patterns / String match & modify

Options to s///

* To alter the way matching/replacement is performed,
you can suffix the s/// pattern with any/many of these

modifiers:
Modifier Meaning
i,m,0,s,X As previously discussed
g Replace globally; e.g., find all occurrences
e Evaluate replacement as expression

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 [-35

Patterns / String match & modify

The s/l/lg modifier

* Putting /g (global) after a s/// pattern-replace causes it to
keep matching and replacing until no more matches

remain:
Replace the first digit with an X:
$ = 'a-1l b-2 c-3";
s/\d/X/; # 3 1is now 'a-X b-2 c-3'

Replace all digits with X's:
$ = 'a-1l b-2 c-3";
s/\d/X/g; # S 1is now 'a-X b-X c-X'

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-36

Patterns / String match & modify

The s///le modifier

* Normally, right-hand-side is interpreted as a double-
quoted string.

* Putting /e (eval) after a s/// pattern-replace causes the
right-hand-side to be evaluated as a Perl expression
(returning a string):

Replace any integer i with i-times-2:
S = "2 + 3 =5";
s/ (\d+)/$1 * 2/ge; # becomes "4 + 6 = 10"

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-37

Patterns / String match & modify

The s///x modifier

* Putting /x (eXtended) after a s/// pattern-replace allows
you to use whitespace and comments for readability:

Delete C-style comments from
Scode =~ s{

/* # Match opening /*

LK # Match minimal no.

*/ # Match closing */
P {tgsx;

Scode:

delimiter
of chars
delimiter

S\

g = global search/replace
s = dot matches newline
x = allow comments/whitespace

Copyright © 1996, 2000 Zeegee Software Inc. I1/15/08

A Crash Course in Perl5 1-38

Patterns / String match & modify

Anatomy of a tr//| command

Search list | |Replacement list | | Modifiers

| |

tr/2A-70-9/a-z/d;

tr{A-720-9}{a-z}d;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 -39

Patterns / String match & modify

Translation with tr///

* To translate or count characters, use the tr///
operator (also called y///):

tr/A-72/a-z/
tr/a-z/2A-2/

Convert to lowercase
Convert to uppercase

* If no replacement list, just counts the characters:

tr/*//
tr/*0-9//

Count stars
Count stars and digits

 Returns number of characters translated or counted.

Copyright © 1996, 2000 Zeegee Software Inc.

11/15/08 A Crash Course in Perl5 1-40

Patterns / String match & modify

tr/ll is not s///"M!

* The search list in tr/// is not a regular expression pattern!

You can use \ in the search list for special characters
(like \000), and - to denote ranges (like a-2z)... but

that's it!

* The replacement list in tr/// does not interpolate!

XNO!
tr/ (la-z])/Sstuff/;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 |-41

Patterns / String match & modify

The tr///lc modifier

* A /c complements the search list:

Change anything alphabetic to a "?":
tr/a-zA-72/?/;

Change anything NOT alphabetic to a "?":
tr/a-zA-72/?/¢c;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-42

Patterns / String match & modify

The tr///d modifier

* Normally, if replacement list is shorter than the search
list, the last char of the replacement list is duplicated.
However, a /d says to just delete anything not given:

Downcase uppers, and replace digits with z's:
tr/A-20-9/a-z/; # "THX-1138" -> "thx-zzzz"

Downcase uppers, and delete digits:
tr/A-720-9/a-z/d; # "THX-1138" -> "thx-"

* For the purposes of the returned value, deletion is
regarded as translation, so both of the above return 7.

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-43

Patterns / String match & modify

The tr/lls modifier

* A Is squashes duplicate matches:

Change each digit to a single x:
tr/0-9/x/; # "NCC-1701D" -> "NCC-xxxxD"

Change runs of digits to a single x:
tr/0-9/x/s; # "NCC-1701D" -> "NCC-xD"

Change "yeeeeoooww" to "yeow":
tr/a-zA-72//s;

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-44

Patterns

Pattern variables

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-45

Patterns / Pattern-related variables

$1 ... %9

* As discussed already, each $n holds the text matched in
group n of the last pattern match.

* We define group n as the one beginning with the nth left
parenthesis.

/N (httpl ftp) :// ([\w\.1+): (\d+) (/.*)S/
1 2 3 4

* If you want to make use of $n, be sure to store it in a
normal variable before you do your next pattern match!

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-46

Patterns / Pattern-related variables

$& (SMATCH)

* The string matched by the last successful pattern match.

if (m{\bHTTP://\S+}i) {
print "Line contains a URL: $&\n";

}

* Read-only
* Mnemonic (Larry’s): like & in some editors

* Mhemonic (mine): “...aaaaand, the match was...?”

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-47

Patterns / Pattern-related variables

$/$' ($SPREMATCH/$POSTMATCH)

* The strings preceding/following whatever was matched
by the last successful pattern match.
$ = 'abcdefghi';

/def/:
print "($7) ($&) ($')\n";

(abc) (def) (ghi)

* Read-only

* Mnemonic: " precedes a quoted string, ' follows it

Copyright © 1996, 2000 Zeegee Software Inc. [1/15/08 A Crash Course in Perl5 1-48

