
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 2: Patterns

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

Introduction
Patterns

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

What are they?

• A way of matching a text string ($_ by default) against
some template, usually for the purpose of...

– Extracting information from the string

– "Editing" portions of the string

• Perl patterns are regular-expressions, which have a
well-established syntax in the Unix world: used by sed,
awk, grep, Emacs, etc...

Integrated right into the Perl language itself

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

What do they look like?

• In Perl, patterns usually delimited by //.

• Any single character matches itself, unless it is a
metacharacter with a special meaning...

Metacharacter(s) Meaning
^ Match beginning of line/string
$ Match end of line/string
. Match any single character (except newline)
\ Quote the next metacharacter
[] Character class...
() Grouping...
| Alternation ("or")...
*, +, ?, {} Quantifiers ("repeat")...

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

Some simple examples

Expression Matches...
/log/ All strings that contain "log", like clogged or

logarithm or just plain log

/^log/ All strings that start with "log", like logical or
logarithm or just plain log

/log$/ All strings that end with "log", like starlog

/^Log$/ The string Log (case-sensitive)

/^bi.$/ Three-letter strings beginning with bi,like bit

/^w.r./ Strings of at least 4 characters, with w as the first
character and r as the third, like worst or warp

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

Character classes

• If you enclose a list of characters inside [], the
construct will match any single character in the list:

/^b[aei]t$/ Matches strings bat, bet, or bit

• Starting it with [^ negates the class:

/^b[^aei]t$/ Matches bXt, b9t, and b!t...
but not bat, bet, or bit

• Within the list, a - defines a range:

/^b[A-Z1-9]t$/ Matches bAt, bBt, ..., b1t, ..., b9t

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

EXERCISES
Write a pattern which only matches strings...

1. ...that contain at least one lowercase vowel
(a, e, i, o, or u).

2. ...that contain at least one lowercase letter which
is not a vowel.

3. ...which are 2-digit hexidecimal numbers.

4. ...which are five letters, beginning and ending in
either E or e.

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

Grouping

• Patterns are made up of smaller subpatterns, to be
matched from left to right.

• The smallest pattern is a single character or
metacharacter:

/^W.r./ A pattern made up of 5 subpatterns

• Grouping defines subpatterns within the pattern that
consist of more than one character. It is done with
parentheses ():

/^(W.r)./ A pattern made up of 3 subpatterns

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Alternation
• You can have one of your subpatterns specify several

possible alternatives to match against, using the | :

/^f(ee|i|o|um)$/ Matches fee, fi, fo, or fum

• If the outermost subpattern is an alternation, you can
drop the parentheses:

/(^A|A$)/ Matches strings that start or end in A
/^A|A$/ Ditto

/^(ho|hum)$/ Matches "ho" or "hum"
/^ho|hum$/ WRONG! Not the same!

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

Quantifiers

• Quantifiers are metacharacters indicating that text
matching the previous subpattern must/may be repeated
a given number of times:

Quantifier Example Meaning
* a* Match 0 or more times
+ a+ Match 1 or more times
? a? Match 0 or 1 times
{n} a{3} Match exactly n times
{n,} a{3,} Match at least n times
{n,m} a{3,5} Match at least n but no more than m times

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

Examples with quantifiers

Expression Matches...
/^smo+/ All strings that begin with "sm" followed by 1 or

more o's, like smother or smooth or
smoooooooooch!

/ma*il/ All strings that contain an "m" followed by 0 or more
a's and then "il", like mil or email or maaaaail

/^ma?il$/ The strings mil and mail

/[^o](oo)+$/ All strings (except oo) that end with an even number
of o's, like moo or moooo or wooo-hoooooo

/^mo{1,3}n$/ The strings mon, moon, and mooon

/^(Mo{2,})+$/ Any strings consisting of one or more reptitions of
/Mo{2,}/, like MooMoooMooooMooMooooo

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

Non-greedy quantifiers
• How would you match a C-style comment, like
/* this */? Here's a typical first try:

/\/*.**\//

• That seems to work... but the .* is greedy: it matches as
many characters as possible, which can be a problem:

/* do it */ x = 1; /* done */

• Non-greedy quantifiers match as few characters as
possible. Just put a "?" after the * or + quantifier:

/\/*.*?*\//

Patterns / Introduction

NO!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

Escape sequences

• Patterns are processed like double-quoted strings,
so all the normal \-escapes work: \n, \t, \0377, \L, etc.

• Additionally, Perl defines the following:

Metacharacter Meaning
\w Match a "word" character (alphanumeric plus "_")
\W Match a non-word character
\s Match a whitespace character
\S Match a non-whitespace character
\d Match a digit character (0-9)
\D Match a non-digit character

• All the above may be used inside character classes

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

Escaping the //

• Remember that the // which delimits a pattern can
create problems for you, since you can't have a bare "/"
inside the pattern!

• One way around this is to escape every "/" as "\/".

• When matching against URLs or Unix filenames, this can
result in "leaning toothpick syndrome..."

Match files in /usr/local/bin...
/^\/usr\/local\/bin\/.+$/

• Later on we'll see a better way to write this...

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

Zero-width assertions

• Perl also defines the following escape sequences for
zero-width assertions (meaning they don't match
actual characters):

Metacharacter Meaning
\b Match a word-boundary (between a \w and a \W)

(within character classes, matches a backspace)
\B Match a non-word-boundary
\A Match only at beginning of string (not at lines)
\Z Match only at end of string (not at lines)
\G Match only where previous m//g left off

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

Interpolating variables

• Variable interpolation works, just like in "-strings:

/ab${subpat}cd$/ As if $subpat were actually there

• The pattern must be legal after interpolation... if the
variable can contain metacharacters, use \Q and \E:

$unsafe = "*You* + me???";

/^\Q$unsafe\E$/ Safely matches against $unsafe

Interpolation will cause the pattern to be recompiled
each time it's encountered... very time consuming! You
might want to use the /o modifier...

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Modifiers

• To alter the way pattern matching is performed, you can
suffix the pattern with any/many of these modifiers:

Modifier Meaning
i Do case-insensitive pattern matching
m Treat string as multiple lines
o Only compile once, after first interpolation
s Treat string as a single line
x Use extended regular expressions (whitespace and

commas allowed!)

• Example: /$warp/iom

• Let's examine them in detail...

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

The /i modifier

• Putting /i after a pattern makes all matching case-
insensitive:

• This even extends to variables which were interpolated
to make the pattern:

/^warp$/ Matches warp only
/^warp$/i Matches warp or WARP or wArP

Patterns / Introduction / Modifiers

$var = "WarP";
/^var/i Matches warp or WARP or wArP

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

The /o modifier

Patterns which contain a variable interpolation are
compiled each time they're encountered, since the
variable might have changed. This is expensive, and may
be needless!

• Putting /o after a pattern means tells Perl to only
compile it once, the first time it is encountered. This
is much more efficient!

Patterns / Introduction / Modifiers

$name = "Fred";
while (<STDIN>) { # for each input line

print "Match!" if /$name/o;
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

The /s modifier

• The . (dot) metacharacter never matches a newline
unless you use the /s (single-line) modifier.

• This tells Perl to pretend that the string is a single line,
so "dot" will match any character, including newline:

Patterns / Introduction / Modifiers

$_ = "does\n before\n precede\n after?\n";

if (/before.*after/) { ... } # fails
if (/before.*after/s) { ... } # succeeds

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

The /m modifiers

• Normally, we think of a string as a single line.

• By default, ^ only matches at the beginning of a string,
and $ at the end of a string (or before a newline at the
end). Embedded newlines will not be matched.

• The /m (multi-line) modifier says that ^ should also
match after any newline, and $ should also match before
any newline.

Patterns / Introduction / Modifiers

$_ = "From: me\nSubject: Hi\nTo: you\n";
if (/^Subject: /m) { # succeeds
 print "I found a Subject: line!\n";
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

EXERCISES
1. Write a pattern that matches any strings which break

the rule "i before e, except after c".

2. Write a pattern which matches all strings that contain
at least one double-letter; e.g., book, crass, llama, etc.

3. Write a pattern that matches strings which are FTP or
HTTP URLs for the hostname in $host.

4. Same as above, but only match ones which point to files
with a .htm or .html extension.

Patterns / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

String match & modify
Patterns

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

"Binding" operators

$a =~ EXPR Indicates that you want to match/modify string
$a against the given EXPRession

$a !~ EXPR Same, but the return value is logically negated

• Certain operations match or modify the scalar $_ by
default. The binary binding operators make them
work on another string:

– Left argument is the scalar to be matched/modified

– Right argument is the pattern/substitution/translation

– Return value indicates success of operation

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

Anatomy of an m// command
Patterns / String match & modify

m/\d{3}-\d{4}/gi;

Pattern Modifiers

m{\d{3}-\d{4}}gi;

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

Matching with m//

• To see if a scalar matches a given PATTERN, use the
m// operator:

• The leading m is optional if using // as delimiters:

• Remember, the default string is $_:

$blank = 1 if $x =~ m/^\s*$/;

$blank = 1 if $x =~ /^\s*$/;

$blank = 1 if /^\s*$/;

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

Extracting subpattern matches

• When using m//, text matching any ()-delimited subpatterns
is placed in the variables $1, $2, ..., where each $n
corresponds to the group beginning with the nth left-paren:

• Since m// returns ($1,$2,..,$n), we can shorten that to:

Is $phone of the form "912-867-5309"?
if ($phone =~ /^(\d{3})-(\d{3}-\d{4})$/) {
 ($areacode, $number) = ($1, $2);
}

($areacode, $number) =
 ($phone =~ /^(\d{3})-(\d{3}-\d{4})$/);

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

Options to m//

• To alter the way pattern matching is performed, you can
suffix the m// pattern with any/many of these modifiers:

Modifier Meaning
i,m,o,s,x As previously discussed

g Match globally; e.g., find all occurrences

• For example:

$MaxWarp = 9; # assume this is a "constant"
...
if ($speed =~ /^warp $MaxWarp$/io) {

could be "WARP 9" or "wArP 9" or ...
}

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

The m//g modifier
• Putting /g (global) after a m// pattern allows you to

match inside a while loop, until done:

• Expression returns true if there was a match, false if not,
and moves the "match position" along.

• You can use pos() to explicitly get/set the "match
position" in the string being matched against.

Patterns / String match & modify

Extract all integers from $_:
while (m/(\d+)/g) {
 print "found $1 before pos ", pos($_), "\n";
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

Anatomy of an s/// command
Patterns / String match & modify

s/Bond/007/gi;

Pattern Replacement Modifiers

s{Bond}{007}gi;

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

Search/replace with s///

• To modify a scalar, use the s/// operator:

• Returns number of substitutions made (true), or 0 (false)
if no matches were found.

s/\s// # Remove first whitespace char
s/\s//g # Remove all whitespace chars
s/^\s+|\s+$//g # Remove lead/trail whitespace

s/0/1/ # Change first 0 to a 1
s/0/1/g # Change all 0s to 1s
s/\bteh\b/the/ig # Fix all occurrences of word "teh"

s/Dr. (\S+)/$1, M.D./g; # Turn "Dr. X" into "X, M.D."

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Using subpatterns in s///

• As in m//, text matching any ()-delimited subpattern of the
pattern is placed in variables $1, $2, ..., where each $n
corresponds to the group beginning with the nth left-paren.

• Those variables can be used the in the replacement to
switch things around:

Change "x loves y" to "y loves x"...
s/(\S+) loves (\S+)/$2 loves $1/g;

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

Options to s///

• To alter the way matching/replacement is performed,
you can suffix the s/// pattern with any/many of these
modifiers:

Modifier Meaning
i,m,o,s,x As previously discussed

g Replace globally; e.g., find all occurrences
e Evaluate replacement as expression

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

The s///g modifier

• Putting /g (global) after a s/// pattern-replace causes it to
keep matching and replacing until no more matches
remain:

Patterns / String match & modify

Replace the first digit with an X:
$_ = 'a-1 b-2 c-3';
s/\d/X/; # $_ is now 'a-X b-2 c-3'

Replace all digits with X's:
$_ = 'a-1 b-2 c-3';
s/\d/X/g; # $_ is now 'a-X b-X c-X'

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

The s///e modifier

• Normally, right-hand-side is interpreted as a double-
quoted string.

• Putting /e (eval) after a s/// pattern-replace causes the
right-hand-side to be evaluated as a Perl expression
(returning a string):

Patterns / String match & modify

Replace any integer i with i-times-2:
$_ = "2 + 3 = 5";
s/(\d+)/$1 * 2/ge; # becomes "4 + 6 = 10"

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

The s///x modifier

• Putting /x (eXtended) after a s/// pattern-replace allows
you to use whitespace and comments for readability:

Patterns / String match & modify

Delete C-style comments from $code:
$code =~ s{
 /* # Match opening /* delimiter
 .*? # Match minimal no. of chars
 */ # Match closing */ delimiter
}{}gsx;

g = global search/replace
s = dot matches newline
x = allow comments/whitespace

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

tr{A-Z0-9}{a-z}d;

Anatomy of a tr/// command
Patterns / String match & modify

tr/A-Z0-9/a-z/d;

Search list Replacement list Modifiers

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

Translation with tr///

• To translate or count characters, use the tr///
operator (also called y///):

• If no replacement list, just counts the characters:

• Returns number of characters translated or counted.

tr/A-Z/a-z/ # Convert to lowercase
tr/a-z/A-Z/ # Convert to uppercase

Patterns / String match & modify

tr/*// # Count stars
tr/*0-9// # Count stars and digits

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

tr/// is not s///!!!

• The search list in tr/// is not a regular expression pattern!

You can use \ in the search list for special characters
(like \000), and - to denote ranges (like a-z)... but
that's it!

• The replacement list in tr/// does not interpolate!

tr/([a-z])/$stuff/;

Patterns / String match & modify

NO!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-42

The tr///c modifier

• A /c complements the search list:
Change anything alphabetic to a "?":
tr/a-zA-Z/?/;

Change anything NOT alphabetic to a "?":
tr/a-zA-Z/?/c;

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-43

The tr///d modifier

• Normally, if replacement list is shorter than the search
list, the last char of the replacement list is duplicated.
However, a /d says to just delete anything not given:

Downcase uppers, and replace digits with z's:
tr/A-Z0-9/a-z/; # "THX-1138" -> "thx-zzzz"

Downcase uppers, and delete digits:
tr/A-Z0-9/a-z/d; # "THX-1138" -> "thx-"

• For the purposes of the returned value, deletion is
regarded as translation, so both of the above return 7.

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-44

The tr///s modifier

• A /s squashes duplicate matches:
Change each digit to a single x:
tr/0-9/x/; # "NCC-1701D" -> "NCC-xxxxD"

Change runs of digits to a single x:
 tr/0-9/x/s; # "NCC-1701D" -> "NCC-xD"

Change "yeeeeoooww" to "yeow":
tr/a-zA-Z//s;

Patterns / String match & modify

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-45

Pattern variables
Patterns

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-46

$1 ... $9

• As discussed already, each $n holds the text matched in
group n of the last pattern match.

• We define group n as the one beginning with the nth left
parenthesis.

/^(http|ftp)://([\w\.]+):(\d+)(/.*)$/
 1 2 3 4

• If you want to make use of $n, be sure to store it in a
normal variable before you do your next pattern match!

Patterns / Pattern-related variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-47

$& ($MATCH)

• The string matched by the last successful pattern match.
if (m{\bHTTP://\S+}i) {

print "Line contains a URL: $&\n";
}

• Read-only

• Mnemonic (Larry’s): like & in some editors

• Mnemonic (mine): “...aaaaand, the match was...?”

Patterns / Pattern-related variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-48

$`/$' ($PREMATCH/$POSTMATCH)

• The strings preceding/following whatever was matched
by the last successful pattern match.

$_ = 'abcdefghi';
/def/;
print "($`)($&)($')\n";

(abc)(def)(ghi)

• Read-only

• Mnemonic: ` precedes a quoted string, ' follows it

Patterns / Pattern-related variables

