
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 8: Database access in Perl

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

What is Perl DBI?

• Perl's "DBI" is an API that allows users to access multiple
database types transparently.

• E.g., if you connecting to an Oracle, Informix, mSQL,
Sybase or whatever database, you mostly don't need to
know the underlying mechanics of the 3GL layer. The
API defined by DBI will work on all these database types.

• You can even connect to two different databases of
different vendor within the one perl script, e.g., for data
migration. Even CSV files are supported!

Introduction

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

How it works

Perl script

DBI

DBD::Oracle

Underlying
Oracle API library

DBD::mSQL

Underlying
mSQL API library

Introduction

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

What drivers do I have?

• You can get a list of all the available drivers installed on
your machine by using the available_drivers method:

• Returns a list with each element containing the "data
source prefix" of an installed driver (e.g., "dbi:Oracle:").
More about these later...

#!/usr/bin/perl -w
use strict; # always a good idea
use DBI; # load the Perl DBI modules

foreach (DBI->available_drivers) {
print "$_\n";

}

Introduction

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

Connecting to the database

• Connecting to different databases requires different
techniques. For exhaustive information, be sure to read
the documentation that comes with your DBD.

• This example will cover connecting to Oracle...

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

A sample connection

• To obtain a database handle, use the DBI->connect
method like this:

• Let's examine this in detail...

use strict;
use DBI;

my $dbh = DBI->connect('dbi:Oracle:somedb',
 'myusername',
 'mypassword')
 || die "connect failed: $DBI::errstr\n";

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

DBI->connect

• General form...

• If the $data_source is undefined or empty, DBI will use
the environment variable $DBI_DSN.

• If $username/$password are undefined, defaults to
environment values $DBI_USER and $DBI_PASS.

$dbh = DBI->connect($data_source,
$username,
$password,
\%attr);

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

The data source name

• The data source name ("DSN") is like a URL.
It takes the general form:

 dbi:drivername:instance

• The driver name in our example is "Oracle", because
we're using DBD::Oracle to connect.

• The instance is the database instance we want to
connect to. This part is driver-dependent...

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

Some data source names
Connecting

• Some popular data source name formats:

dbi:driver:db

dbi:driver:db@host:port

dbi:driver:database=db;host=host;port=port

• There is no standard for the text following the driver
name. Each driver can use whatever syntax it wants!
Read the documentation for your driver (DBD::Oracle)

• Last one is ODBC-style; generally preferred among
authors, so try that if all else fails. :-)

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Data source names for Oracle

• With DBD::Oracle, the DBI->connect DSN can be one of
the following:

dbi:Oracle:tnsname

dbi:Oracle:sidname

dbi:Oracle:host=hostname;sid=sid

• Some other less common formats also work if supported
by the Oracle client version being used.

• DBD::Oracle supports an unlimited number of concurrent
database connections to one or more databases.

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

Did the connect succeed?

• The connect method returns an database handle object
(true) on success, and undef (false) otherwise.

• If it failed, we can check $DBI::errstr for the reason.

Connect to the database, obtaining a handle.
Make sure to verify that we succeeded!
my $dbh = DBI->connect('dbi:Oracle:somedb',
 'myusername',
 'mypassword')
 || die "connect failed: $DBI::errstr\n";

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

Options for DBI->connect

• DBI->connect takes a fourth argument, a ref to a hash of
options:

$dbh = DBI->connect($datasource, $user, $pass, {
 RaiseError => 1,
 AutoCommit => 1,
 });

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

Options for DBI->connect

• AutoCommit says whether or not to automatically
commit database transactions. If your database doesn't
support transactions, it must be set true, or a fatal error
will occur.

• RaiseError and PrintError control how errors are
handled when they occur:

– If RaiseError is true, we... croak $DBI::errstr

– If PrintError is true, we just... warn $DBI::errstr

• You are strongly encouraged to use RaiseError!

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

Embedding options in DSNs

• You can embed the connection options inside a data
source name, using Perlish hash syntax:

 "dbi:Oracle(PrintError=>0,Taint=>1):mydb"

• Individual attributes embedded in this way take
precedence over any conflicting values given in the
\%attr parameter. In other words, the DSN wins.

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

Disconnecting

• If you don't disconnect your handle explicitly, you'll get
an error from the destructor: "Database handle destroyed
without explicit disconnect".

• So remember to disconnect when you're done:

Disconnect the handle from the database:
$dbh->disconnect;

Connecting

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

Error handling

• There are several different kinds of handles you may be
manipulating:

–Database handles ($dbh), returned by DBI->connect

– Statement handles ($sth), returned by $dbh->prepare

–Driver handles ($drh) (rarely seen)

• For the purposes of error handling, these are all treated
identically: there's a nice, consistent interface for getting
the last error that happened on a given handle...

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

$h->err

• $h->err returns the error number that is associated
with the current error flagged against the handle $h.

• Usually an integer, but don't depend on that!

• The error number depends completely on the
underlying database system: switch from Oracle to
MySQL, and the numbers will be different! Think about
portability.

• Example: an Oracle connection failure of ORA-12154
may cause $h->err to return 12154.

Error handling

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

$h->errstr

• $h->errstr returns a textual description of the error, as
provided by the underlying database.

• Corresponds to the number returned by $h->err.

• Example: the Oracle error above returns something
like...

"ORA-12154: TNS:could not resolve service name"

Error handling

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

$h->state

• $h->state returns a string in the format of the standard
SQLSTATE five-character error string.

• The success code "00000" is translated to 0 (false) as a
special case.

• Many drivers do not fully support this method.
If unsupported, then state will return "S1000" (General
Error) for all errors.

• Again, read the documentation for your DBD!

Error handling

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

Tracing
• To assist you in tracking down bugs, you can put a trace on

DBI activity via DBI->trace(level). There are several valid
tracing levels:

 0 Disables tracing.

 1 Traces DBI method calls, showing returned values & errors

 2 As for 1, but also includes method entry with parameters.

 3 As for 2, but also includes more internal driver information.

 4 Levels 4 and above can include more detail than is helpful.

• DBI->trace takes an optional second argument: a file to
which the trace information is appended.

Error handling

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

Sending SQL statements

• Note that there are two types of SQL statement:

– Statements which returns rows, like select.
For these, we use the prepare() and execute() methods.

– Statements which merely perform an action, like create.
For these, we can just use the simple do() method.

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

$dbh->do

Create a string containing our SQL...
my $sql = <<EOF;

CREATE TABLE employees (
id INTEGER NOT NULL,
name VARCHAR(64),
phone CHAR(10)

)
EOF

...and execute it:
$dbh->do($sql);

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

Preparing a SELECT

• Just as we get a database handle when we connect to the
database, we get a statement handle when we prepare a
SQL statement for execution:

• This statement handle is what we work with to get back
rows.

my $sql = "SELECT * FROM employees";
my $sth = $dbh->prepare($sql);
$sth->execute;
...

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

Reading the rows

• Once we do $sth->execute, we have many choices for
how we want to get the rows back!

$sth->fetchrow_array Get next row as ($col1, $col2, ...)

$sth->fetchrow_arrayref Get next row as [$col1, $col2, ...]

$sth->fetchrow_hashref Get next row as {'colname'=>$col1, ...}

$sth->fetchall_arrayref Get all rows, each as arrayref or hashref

$sth->bind_col Load next row directly into Perl variables

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

$sth->fetchrow_array

• Returns the columns of the next row, and empty when
done:

my $sth = $dbh->prepare(qq{SELECT id, name, phone
 FROM employees});
$sth->execute();

my @row;
while (@row = $sth->fetchrow_array()) {

my ($id, $name, $phone) = @row;
...

}
$sth->finish();

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

$sth->fetchrow_arrayref

• Returns columns of the next row, undef when done.

• Returns same arrayref with different contents on each
call: copy values elsewhere if keeping them!

my $sth = $dbh->prepare(qq{SELECT id, name, phone
 FROM employees});
$sth->execute();

my $row;
while ($row = $sth->fetchrow_arrayref()) {

my ($id, $name, $phone) = @$row;
...

}
$sth->finish();

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

$sth->fetchrow_hashref

• Returns the columns of the next row in a
{colname=>value} hash, and undefined when done:

my $sth = $dbh->prepare(qq{SELECT id, name, phone
 FROM employees});
$sth->execute();

my $rowh;
while ($rowh = $sth->fetchrow_hashref()) {

my $id = $rowh->{'id'}
my $name = $rowh->{'name'}
my $phone = $rowh->{'phone'};
...

}
$sth->finish();

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

$sth->fetchall_arrayref
• To fetch just the first column of every row, as an arrayref

$all = $sth->fetchall_arrayref([0]); # $all is ref to array of arrays

• To fetch the columns 0 and 2 of every row, as an arrayref:

$all = $sth->fetchall_arrayref([0,2]); # $all is ref to array of arrays

• To fetch all fields of every row as a hash ref:

$all = $sth->fetchall_arrayref({}); # $all is ref to array of hashes

• To fetch only fields "id" and "name" of every row as a hash ref:

$all = $sth->fetchall_arrayref({'id'=>1, 'name'=>1 });
$all is ref to array of hashes

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

$sth->bind_columns

• Another way to get back rows is by binding Perl
variables to the columns of the results, then fetching
rows one at a time until we're done:

my $sth = $dbh->prepare(qq{SELECT id, name, phone
 FROM employees});
$sth->execute();

my $id, $name, $phone;
$sth->bind_columns(\$id, \$name, \$phone);
while ($sth->fetch()) {

print "$id, $name, $phone\n";
}
$sth->finish();

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

$sth->finish
Queries/commands

• Indicates that no more data will be fetched from this
statement handle before it is either executed again or
destroyed.

• Rarely needed, but can be helpful in very specific
situations to allow the server to free up resources (such
as "sort" buffers).

• When all the data has been fetched from a SELECT
statement, the driver should automatically call finish for
you. So you should not normally need to call it explicitly.

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

$sth->rows
Queries/commands

• Returns the number of rows affected by the last row
affecting command, or -1 if the number of rows is not
known or not available.

• You can only rely on a row count after a non-SELECT
execute (for some specific operations like UPDATE and
DELETE), or after fetching all the rows of a SELECT
statement.

• Don't even depend on this giving you "rows-so-far" with
SELECTs!

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

Prepared statements

• Parsing SQL is very time consuming!

• Best to prepare a statement with certain parts left
"empty" (parsing it just once), and then substitute in the
missing pieces when needed.

• We do this with the special bind_param() method...

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Prepared statements
use DBI qw(:sql_types); # for SQL_VARCHAR
...
my $sth = $dbh->prepare(qq{ SELECT id, name

FROM employees
WHERE name like ? });

foreach my $pattern ('Jean%', 'Joan%', 'June%') {
$sth->bind_param(1, $pattern, SQL_VARCHAR);
$sth->execute();

$sth->bind_columns(undef, \$id, \$name);
while ($sth->fetch) {

print "$id, $name\n";
}

}

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

Quoting strings

• To turn a Perl string into a SQL string appropriate for
your database, use $dbh->quote:

my $unsafe = "Don't do it!";
my $safe = $dbh->quote($unsafe);

my $sth = $dbh->prepare(qq{
 SELECT *
 FROM msgs
 WHERE message = $safe
});

'Don''t do it!'

Queries/commands

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

Transactions
• Suppose we have two tables, employees and departments,

which have to be in synch: e.g., a new employee has an entry
in both tables.

• We want to protect against situations where we corrupt our
database by updating one table but then we quit for some
reason before we update the other!

• DBMSs like Oracle support this through transactions... a
transaction is a group of operations which must succeed
collectively or else not at all.

• If the last operation succeeds, we commit the whole
transaction; else, we roll back to the point before we started.

Advanced issues

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

Using transactions
• If you plan to use transactions, then when you connect, be

sure to ask that errors cause a thrown exception... and
don't auto-commit!

• If/when RaiseError causes an exception to be thrown, we'll
catch and handle it...

my $dbh = DBI->connect('dbi:Oracle:somedb',
'myusername',
'mypassword',

 {
 RaiseError => 1,
 AutoCommit => 0
 });

Advanced issues

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

A skeleton for transactions
$dbh->{AutoCommit} = 0; # enable transactions
$dbh->{RaiseError} = 1; # make sure err raises exception
eval {
 foo(...) # do lots of work here
 bar(...) # including inserts
 baz(...) # and updates
 $dbh->commit; # commit changes if we make it here
};
if ($@) {
 warn "Transaction aborted because $@";
 $dbh->rollback; # undo the incomplete changes
 # add other application clean-up code here
}

Advanced issues

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

Stored procedures
• DBD::Oracle can execute a block of PL/SQL code by

starting it with BEGIN and ending it with END; we use
PL/SQL blocks to call stored procedures.

• Here's a simple example that calls a stored procedure
called ``foo'' and passes it two parameters:

$sth = $dbh->prepare("BEGIN foo(:1, :2) END;");
$sth->execute("Baz", 24);

Advanced issues

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

A stored procedure call
• Here's a stored procedure called with two parameters

and returning the return value of the procedure. The
second parameter is defined as IN OUT, so we use
bind_param_inout to enable it to update the Perl var:

$sth = $dbh->prepare(qq{BEGIN
 :result = func_name(:id,:changeme)
 END;});
$sth->bind_param(":id", "FooBar");
my ($result, $changeme) = (41, 42);
$sth->bind_param_inout(":result", \$result, 100);
$sth->bind_param_inout(":changeme", \$changeme, 100);
$sth->execute();
print "returned '$result'; changed is '$changeme'\n";

Advanced issues

11/24/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

Additional reading

• "Programming the Perl DBI'' is the official book on the
DBI written by Alligator Descartes and Tim Bunce.
Published by O'Reilly & Associates, released on February
9th, 2000.

• The DBI:: manual page (try "perldoc DBI" on your
system)

