
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 7: Web development in Perl

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

OUTLINE

This class is devoted to one
of the most popular Perl
topics: how do you develop a
(fill in the blank) program for
the World Wide Web?

As standards converge, so
does software. Today, you'll
see some of the standard Perl
tools - and approaches - for
building WWW applications.

• Resources

• HTML/SGML

• CGI scripting

• WWW clienting

• Mail and MIME

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

RESOURCES

There are numerous
resources on the Web for
Perl developers, especially
ones who do Web-related
work.

These are just a few.

Remember the ecological
core of OO programming:
reduce, reuse, recycle.

• Perl Language Home Page

• Perl5 Module List

• CPAN

• USENET newsgroups

• The Perl Institute

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

Perl Language Home Page
• The place to go to find almost anything perly:

http://www.perl.com
• From here, you can find hyperlinks to virtually every other

resource...

Resources

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

Perl5 Module List
• Before you spend precious time implementing and testing

that all-important module, why not see if someone's already
done the work for you?

• Scads of free semi-standard modules contributed by Perlers
around the world are listed, by topic, at:

http://search.cpan.org
• Each entry hyperlinked to author's info in the Who's Who

list: from there, you can email the author with questions, or
go to their CPAN directory and download the software!

Resources

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

CPAN
• The Coordinated Perl Archive Network: a set of

anonymous FTP sites which contain modules from the
Module List, latest Perl builds/patches/ports, and more!

• Mirror sites are all around the world... to find the site
nearest you, go to:

http://cpan.org
• Master site is the Perl Authors' Upload SErver (PAUSE),

in Berlin.

Resources

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

USENET newsgroups
• comp.lang.perl.misc: Newbie questions, postings related

to general Perl issues, pleas for help, etc. UNMODERATED.

• comp.lang.perl.modules: Postings related to software in
the Perl5 Module List. UNMODERATED.

• comp.lang.perl.announce: Announcements of
new/improved modules, releases of Perl, and other stuff of
general interest. MODERATED.

The Perl community tends to self-moderate the
unmoderated newsgroups: please keep postings brief and
professional, with good subject lines... or risk being flamed.

Resources

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

HTML/SGML

HTML (a special case of
SGML) is everywhere these
days...

Your project may need to
generate HTML, either for
static WWW pages or for
dynamic CGI output.

You may even need to parse
HTML, to extract
information.

• How to generate HTML

• How to build syntax trees

• How to output syntax trees

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

Why use modules?

Why would I need modules to output HTML? Can't I just use
print statements?

• You could... but accidents happen. Leaving out a "<"
here, a quote-mark there, forgetting to escape text with
unsafe characters in it... all these can cause a browser to
choke on your output. And it might be someone else's
browser - not yours - that shows the problem!

• Generally, the modules you want are in the HTML::
module tree.

HTML/SGML

P e r l
5

Perl

Perl
5

This is 24 pt
P e r l
5P e r l

5
P e r l
5

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

HTML::Stream

• Allows you to open an "HTML stream" on any
FileHandle, or object which responds to print() message.

• Can intermix HTML output with ordinary printing.

• Provides HTML conversion functions, and 3 OO
interfaces for outputting HTML: the vanilla, chocolate,
and strawberry interfaces.

HTML/SGMLwritten by
Eryq!
:-)

use HTML::Stream;

$HTML = new HTML::Stream *STDOUT;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

HTML::Stream, functions
HTML/SGML

use HTML::Stream qw(:funcs);

Use html_tag to generate text for <TAGS>.
Use html_escape to escape unsafe text.

print html_tag(A, HREF=>$url);
print '© 1996 by', html_escape($myname), '!';

print html_tag('/A');

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

HTML::Stream, vanilla
HTML/SGML

$HTML = new HTML::Stream *STDOUT;

Output an begin-hyperlink, and an image tag:
$HTML->tag('A', HREF=>$url);
$HTML->tag('IMG', SRC=>$gifurl, ALT=>"LOGO");

Output some text, safely! Can also use t().
$HTML->text("Is 2 > 1, & if so, so what?");

Output a copyright entity. Can also use e().
$HTML->ent('copy');

End the hyperlink:
$HTML->tag('/A');

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

HTML::Stream, chocolate
HTML/SGML

$HTML = new HTML::Stream *STDOUT;

Output same as previous slide. Note method chaining!
$HTML -> A(HREF=>$url)
 -> IMG(SRC=>$gifurl, ALT=>"LOGO")
 -> t("Is 2 > 1, & if so, so what?")
 -> e('copy')
 -> _A;

Only known HTML tags are turned into methods...
so typos like this fail at run-time:
$HTML -> IMGG(SRC=>$gifurl, ALT=>"LOGO")

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

HTML::Parser
HTML/SGML

• Class for building a custom HTML parser. You define a
subclass, and just override a few methods:

start($tag, $attr) when a <TAG> is seen
end($tag) when a </TAG> is seen
text($text) when plain text is seen
comment($comment) when a comment is seen

• Overrides get invoked automatically during parsing:
use HTML::MyParser; # subclass of HTML::Parser;
$p = new HTML::MyParser;
$p->parse_file("foo.html");

written by
Gisle Aas

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

HTML::HeadParser
HTML/SGML

• Lightweight HTML::Parser subclass, for just the
<HEAD>...</HEAD> part of a document:

use HTML::HeadParser;

Create new parser, and parse text:
$p = HTML::HeadParser->new;
$p->parse($text) and print "not finished";

Access some common tags:
$p->header('Title') # get <title>....</title>
$p->header('Base') # get <base href="http://...">

Access <meta http-equiv="Foo" content="...">:
$p->header('Foo')

written by
Gisle Aas

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

HTML::TreeBuilder
HTML/SGML

• Heavy-duty HTML::Parser subclass

• Builds a syntax tree from the HTML as it parses. This is
a tree-like structure of HTML::Element objects, which
can be navigated, manipulated, and printed back out as
HTML text.

• Other modules also deal with syntax trees...

written by
Gisle Aas

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

HTML::AsSubs
HTML/SGML

• Another nifty way to do things. Creates an HTML syntax
tree (of HTML::Elements) by nested function calls...

use HTML::AsSubs;
$h = body(

h1("A heading"),
p("The first paragraph, which contains a ",
 a({href=>'link.html'}, "link"),
 " and an ",
 img({src=>'img.gif', alt=>'image'}),
 "."
),

);
print $h->as_HTML;

Written by
Gisle Aas &
Tim Bunce

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

HTML::Formatter
HTML/SGML

• Abstract class. Subclasses take a syntax tree and output
the tree in another format...

– HTML::FormatText

– HTML::FormatPS

• Don't see what you need? Define your own subclass!

written by
Gisle Aas

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

CGI SCRIPTING
Many information systems
want to provide WWW
interfaces to their users.

Applets are great for UI at
this point, but are still too
restricted in power and
audience.

For simple interfaces with
sophisticated server-side
processing, CGI is still a
good, universal choice...

• Introduction to CGI
scripting

• Writing a CGI script

• The many Perl CGI
modules

• FAQs

• Tricks of the trade

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

CGI?
CGI scripting / Intro

Common CGI is universal in the WWW. Any browser that can
generate an HTTP request can run a CGI script. You needn't
be too concerned with browser compatibility.

Gateway A translation layer between one information system and
another is often called a gateway. CGI's strength lies not in
what it does by itself, but in the potential access it offers to
other systems such as database and graphic generators.

Interface CGI isn't a library or a product: it's a formally defined interface
between HTTP servers and CGI programs. HTTP servers on
any system can theoretically run CGI programs written in any
language: Perl, C, etc.

Inspired by Andy Oram and Linda Mui.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

Why use Perl for CGI?
CGI scripting / Intro

Most CGI applications involve:

– Accessing external programs/databases

– Manipulating data

– Generating text or HTML

All of these are incredibly easy with Perl! As it even says in
the first 3 lines of the Perl manpage...

Perl is an interpreted language optimized for scanning arbitrary text
files, extracting information from those text files, and printing reports
based on that information.

And that was just for Perl4... it's not just for text anymore!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

Overview of CGI
CGI scripting / Intro

• CGI scripts (or CGI programs) are run by an HTTP
server in response to a browser loading the script's URL.

• Generally have a short lifespan... most CGI scripts do
some variation of the following...

1. Start up
2. Get input from browser
3. Process
4. Write HTML to browser
5. Shut down

Current
topic

Mostly
covered!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

STDIN STDOUT

HTTP and CGI
CGI scripting / Intro

any host your host

1
4

Request
(URI + header + body)

Full HTTP header + data

HTTPD
(NCSA, NCS, etc.)

Environment
vars + body

Partial HTTP
header + data

2

3

Your
CGI script

User agent
(browser, robot)

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

When are CGI scripts run?
CGI scripting / Intro

• CGI scripts may run when...

– A user submits an HTML form to the script.

– A user follows a hyperlink to the script's URL.

– An automated process (robot, spider, indexer, etc.)
loads the script's URL or submits data to it.

• Any software that causes a CGI script to be invoked
through HTTP is called a user agent. In fact, any
software which does any WWW clienting at all is called a
user agent, even when there's no interactive user!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

CGI script URLs
CGI scripting / Intro

• CGI scripts used to be kept in a single, special directory,
and their URLs generally started with /cgi-bin after the
hostname:

http://your.host.com/cgi-bin/scriptname

• Nowadays, common practice to have any file with a .cgi
extension be recognized as a CGI script:

http://your.host.com/~user/hello.cgi

• Some sites even allow index.cgi for directories... so you
can't tell from the URL that you're running a script!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

How forms become CGI input

1. This is a simple HTML page your browser might load.
It contains a form which is submitted to the CGI script
http://some.host/test.cgi:

CGI scripting / Intro

<FORM ACTION="http://some.host/cgi/test.cgi"
 METHOD=POST>
 <INPUT NAME="msg" VALUE="Type a message!">
 <SELECT NAME="priority">
 <OPTION>High
 <OPTION>Low
 </SELECT>

 <INPUT TYPE=SUBMIT>
</FORM>

Type a message! High

Submit

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

How forms become CGI input

2. When you press the SUBMIT button, the state of the
form is turned into an HTTP request that your browser
sends to the HTTPD given in the ACTION URL.

CGI scripting / Intro

POST /cgi/test.cgi HTTP/1.0

Content-Length: 35

User-Agent: Mozilla/3.0

X-Token: 24601

msg=Type+a+message%21&

priority=High

This is an HTTP request.

Request line

Email-like headers

Blank line

Body data (usually only CGI
requests have body data).
Newlines in body are shown
for clarity only, and do not
really exist.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

How forms become CGI input

3. The HTTP then takes that input, uses it to set up some
environment variables, and then tries to run the named
CGI script. Notice that REQUEST_METHOD...

CGI scripting / Intro

REQUEST_METHOD: POST
HTTP_USER_AGENT: Mozilla/3.0
REMOTE_HOST: your.host.com
REMOTE_ADDR: 128.183.20.192
CONTENT_LENGTH: 35

A part of the environment
passed into the CGI script.

msg=Type+a+message%21&

priority=High

The query is sent to the script's
STDIN if a POST request, and is
just put in the QUERY_STRING
environment variable if a GET
request.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

The GET request method
CGI scripting / Intro

• GET requests usually result from loading the script's URL
directly, or by following a hyperlink:

http://hostname/scriptname?query

• Can also result from hitting SUBMIT on an HTML form...
the query is a string that encodes the state of the form:

<FORM METHOD=GET
 ACTION="http://hostname/scriptname">

• In GET requests, the query (if any) is accessed by the
CGI through the QUERY_STRING environment
variable... and these are limited in size!!!

?query is optional

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

The POST request method
CGI scripting / Intro

• POST requests usually result from hitting SUBMIT on an
HTML form... the query is a string that encodes the state
of the form:

<FORM METHOD=POST
 ACTION="http://hostname/scriptname">

• In POST requests, the query (if any) is read by the CGI
from its standard input (STDIN). That means there's
no real limit on how long the posted query can be!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

Gathering form input
CGI scripting / Intro

• Important: this often tells us what the user wants to do!

• As we've seen, input from a user (e.g., form input) might
be provided to the CGI script in several places:

– Environment variables set up by the HTTPD: %ENV

– The standard input of the script: STDIN

– The command line (old style ISINDEX): @ARGV

Note that the same input can come from different places
under different circumstances! CGI scripts should
transparently look in all the necessary locations!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

CGI-encoded input
CGI scripting /Intro

• Input to CGI scripts is of the form

key1=val1&key2=val2&...&keyn=valn

• Each key/value is encoded so that special characters can
be placed in URLs without problems:

– Single spaces are turned into + signs.

– Alphanumerics [A-Za-z0-9] are left alone.

– Any other kind of character is usually turned into the sequence
%XX, where XX is the hexadecimal code (0-255).

Hello%2C+nurse%21Hello, nurse!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

STDIN, STDOUT, STDERR?
CGI scripting / Intro

In a CGI environment, STDERR usually points to the HTTPD
error log. You can advantage of this by outputting debug
messages, and then checking the log file later on:

sub debug { print STDERR "$0 debug: ", @_, "\n" }

Both STDIN and STDOUT point to the client (the browser).
Well, sort of...

STDIN really points to the HTTPD which got the client's original
request and invoked the CGI script.

STDOUT usually point back to that HTTPD, which fixes up the
outgoing HTTP header. With Non-Parsed Header (NPH) scripts,
STDOUT might lead right to the client.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

HTTP output
CGI scripting / Intro

• CGI scripts output their result document to their
standard output (STDOUT).

This document must be preceded by a simple HTTP
CGI header (a MIME header, really) that tells what
type the document is... so the browser can display it
properly:

The HTTP header:
print "Content-type: text/html\r\n";
print "\r\n";

The document...
print "<HTML><H1>Hi!</H1></HTML>\n";

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

WRITING A SCRIPT

So you think you're ready to
try some of this stuff out for
real, eh?

• Coding it

• Hello, world

• Installing it

CGI scripting

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

Preflight checklist...
CGI scripting / Writing a script

To help find bugs/prevent security holes, the shebang
line should always turn on warnings and taint
checking:

#!/usr/bin/perl -Tw

• To find nasty hidden bugs, you should always:

use strict;

• Finally: find out where your HTTPD's error log is... if
you get the dreaded "500 Server Error", look at the end
of this file to see what went wrong.

Okay! Now let's do some coding...

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

A "hello world" CGI script
CGI scripting / Writing a script

#!/usr/bin/perl -Tw
use strict;

Output the HTTP header for a plain text document:
print "Content-type: text/plain\r\n";
print "\r\n";

Output our environment as the document:
print "Environment variables\n";
my $var;
foreach $var (sort keys %ENV) {
 print $var , " = ", $ENV{$var}, "\n";
}
print "BYE!\n";

Not needed, but nice:
exit 0;

Save this
in a file

"hello.cgi"

Path to
Perl on your

system

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

Where to put it
CGI scripting / Writing a script

• CGI scripts are often kept in special directories:

– HTTPD knows to run such files instead of serving them.

– Directories normally not writeable by average users.

– Usually at least one main directory, called cgi-bin.

• Nowadays, some sites allow any file with a .cgi extension
to be recognized as a CGI script. You can put your
scripts under your own public-html directory:

mv hello.cgi ~/public_html/hello.cgi

• Bottom line: ask your sysadmin or webadmin.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

Set the file permissions
CGI scripting / Writing a script

Now make the script readable and executable by world:

chmod 0755 ~/public_html/hello.cgi

This is vital. If you forget this step, you'll get a

Permission denied

error when you try to load your script from a browser.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

Try it out!
CGI scripting / Writing a script

Open up a browser, and load the script's URL. In the
current example, this might be:

http://hostname/~user/hello.cgi

Where hostname is the name of the host the script is on,
and user is your user id on that host. Again, you may
need a webadmin or other seasoned individual to help you
with the URL.

You should get back a plain text document, with a lot of
environment variables in it. If you didn't, well... we'll
discuss troubleshooting later...

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-42

PROJECT
• Create the simple HTML form shown previously, and

modify its action so it points at your hello.cgi script.
Load it into your browser, and submit the form. What
do you see? How does this differ from the output when
you just load the script URL?

• Modify the hello.cgi script so it outputs an HTML form
which, when submitted, will go back to the script. Do
you need to hardcode your script's URL... or do the
environment variables hint at a better way?

 CGI scripting / Writing a script

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-43

PERL CGI MODULES

That "hello world" script is
nice... but what if we want
the user's form input?

Don't despair! Much of the
really nasty work has already
been done for you...

• CGI_Lite

• CGI.pm

• The CGI:: family

• CGI::Carp

CGI scripting

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-44

CGI_Lite
CGI scripting / Perl CGI modules

• Simplest of all the Perl5 CGI interface modules... a real
nice way to get your feet wet.

• Provides support for reading tags from GET/POST, and
handling file upload.

• Like all the other CGI modules, CGI_Lite is an interface
class... you create an instance, and send it messages to
"talk" to the Common Gateway Interface.

written by
Shishir

Gundavaram

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-45

Using CGI_Lite
CGI scripting / Perl CGI modules

#!/usr/local/bin/perl -Tw
use CGI_Lite;
use strict;

Create the CGI interface object:
my $cgi = new CGI_Lite;

Parse the form data:
$cgi->parse_form_data;

Output the HTTP header:
print "Content-type: text/plain\r\n";
print "\r\n";

Output the document:
print "Here's the data we got back...\n";
$cgi->print_form_data;
print "BYE!\n";

There, now!
That wasn't so

bad, was it?

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-46

More CGI_Lite
CGI scripting / Perl CGI modules

#!/usr/local/bin/perl -Tw
use CGI_Lite;
use strict;

Create the CGI interface object, and get the query:
my $cgi = new CGI_Lite;
my %query = $cgi->parse_form_data;

Output the HTTP header:
print "Content-type: text/plain\r\n\r\n";

Output the document:
print "Here's the data we got back...\n";
my $key;
foreach $key (keys %data) {
 print $key, " = ", $query{$key}, "\n";
}
print "BYE!\n";

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-47

CGI.pm
CGI scripting / Perl CGI modules

• Slightly more complex, but more thorough, CGI interface
module.

• Kind of a "backpacker's interface": this one compact (well,
not so compact) module has support for GET/POST, file
upload, HTML form generation, HTTP cookies, saving
queries to file, etc., etc.!

• Various components have been split off into the newer
CGI:: modules, but this little baby's great for those one-
shot, not-so-easy CGI scripting jobs...

written by
Lincoln
D. Stein

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-48

Using CGI.pm
CGI scripting / Perl CGI modules

#!/usr/local/bin/perl -Tw
use CGI;
use strict;

Create the CGI interface object, and get the query:
my $cgi = new CGI;

Output the HTTP header:
print "Content-type: text/plain\r\n\r\n";

Output the document:
print "Here's the data we got back...\n";
my ($param, $value);
foreach $param ($cgi->param) {
 foreach $value ($cgi->param($param)) {
 print "$param = $value\n";
 }
}

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-49

Debugging CGI.pm scripts
CGI scripting / Perl CGI modules

• One really nice thing about CGI.pm scripts is that you
can run them from the Unix command line:

• This can make it a lot easier to see "what's going on" as
you start working with CGI scripts.

perl -d mycgi
key1="val1... this can be quoted"
key2=val2
^D

perl -d mycgi key1="val1" key2=val2

- or -

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-50

The CGI:: family
CGI scripting / Perl CGI modules

• The heavy-duty CGI interface for the serious developer.
A whole family of related classes.

• Very large... can take a while to load on slower machines.

• Important modules:

CGI::Base interface to the CGI environment

CGI::Request for accessing the query parameters

CGI::Carp redefine error handling

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-51

CGI::Base
CGI scripting / Perl CGI moduleswritten by

Tim Bunce

#!/usr/local/bin/perl -Tw
use CGI::Base;
use strict;

Create the CGI interface object:
my $cgi = new CGI::Base;

Get some CGI variables... no need to use %ENV!
my $agent = $cgi->var('HTTP_USER_AGENT');

Set up logging to a file (STDERR goes there as well):
$cgi->open_log("/home/mylog");
$cgi->log("Hello, nurse!");

Handy debugging:
print "Content-type: text/html\r\n\r\n";
print $cgi->as_string;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-52

CGI::Request
CGI scripting / Perl CGI moduleswritten by

Tim Bunce

#!/usr/local/bin/perl -Tw
use CGI::Request;

Create the interface object (contains a CGI::Base):
my $req = new CGI::Request;

Get some CGI variables... (note use of CGI object!)
my $agent = $req->cgi->var('HTTP_USER_AGENT');

Output the header and document:
print "Content-type: text/plain\r\n\r\n";
print "Here's the data we got back...\n";
my ($param, $value);
foreach $param ($req->params) {
 foreach $value ($req->param($param)) {
 print "$param = $value\n";
 }
}

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-53

More CGI::Request
CGI scripting / Perl CGI modules

#!/usr/local/bin/perl -Tw
use CGI::Request;
use strict;

Create the interface object (contains a CGI::Base):
my $req = new CGI::Request;

Add some values to it:
$req->extract_values("msg=Hello%2C+nurse%21");

Handy debugging to see what we've got:
print "Content-type: text/html\r\n\r\n";
print $req->as_string;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-54

CGI::Carp
CGI scripting / Perl CGI moduleswritten by

Lincoln
D. Stein

• By default, Perl's warnings/errors go to stderr... which goes
to the HTTPD error log... which gets polluted with error
message that say nothing about who logged them, or when:

• When your CGI script uses this module, the normal error-
output routines are redefined to put timestamps and
program names in the message:
[Fri Nov 17 21:40:43 1995] test.pl: I'm confused at test.pl line 3.

[Fri Nov 17 21:40:43 1995] test.pl: Error: Permission denied.
[Fri Nov 17 21:40:43 1995] test.pl: I'm dying.

I'm confused at test.pl line 3.
Error: Permission denied.
I'm dying.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-55

More CGI::Carp
CGI scripting / Perl CGI modules

• Unfortunately, CGI::Carp's redefinition of carp(), croak(),
confess(), etc. can cause warning messages to be output to
STDERR. This is annoying, but perfectly normal.

• The normal output to STDERR can be redirected to a file, if
you don't care for the HTTPD error log. Do it in a BEGIN
block to catch compilation errors as well:

use CGI::Carp qw(carpout);

BEGIN {
 use CGI::Carp qw(carpout);
 open(LOG, ">>/my/cgi-log") or die("open: $!");

 carpout(LOG);
}

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-56

FAQs

If you've gotten this far,
chances are, something has
gone wrong at some point...
or maybe you just want to do
something a little more
advanced, but don't see how.

• Troubleshooting

• HOW-TOs

• Security-related questions

CGI scripting

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-57

Why am I getting "500" errors?
CGI scripting / FAQs

• The script does not contain the "#!/usr/bin/perl" shabang line that
points to the Perl interpreter, or the path to the interpreter is
invalid.

• Your script has compile-time errors (syntax error, violating "strict"
rules, "use"ing a library file that is not in the @INC path). Always
run scripts from the command-line first!

• The first line output from the script is not a valid HTTP header
(like "Content-type: text/html"). Watch out for buffering effects, as
in:

print "Content-type: text/plain\r\n\r\n";
`ls -l /usr/local/bin`;

• You forgot the blank line after the HTTP header data.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-58

I can't seem to write a file
CGI scripting / FAQs

• Generally, the HTTP server will be running as user
"nobody", or "www", or some other user id with
minimal privileges. So the directory where you intend to
create the file must be writeable by this user id.

• In general, you should always check the return status
from the open command to see if it was a success:

open(FILE, "/some/file.dat") or die "open: $!";

(I'll teach you how to die gracefully soon...)

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-59

My output is missing/out of order!
CGI scripting / FAQs

Stuff like this:

print "Content-type: text/plain\r\n\r\n";
`ls -l /usr/local/bin`;

Breaks easily, due to the fact that STDOUT is buffered. You
can turn buffering off by using the $| variable at the start:

$| = 1;

But this makes output inefficient. You can also try this:

use FileHandle;
print "Content-type: text/plain\r\n\r\n";
STDOUT->flush;
`ls -l /usr/local/bin`;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-60

It's not running my subprogram!
CGI scripting / FAQs

Stuff like this:

@output = `myprog -a foo.dat`;

Is vulnerable to the shell's environment. Often, HTTPDs set
up a minimal PATH before invoking the CGIs...

PATH = /bin:/usr/bin

The solution is to either muck with the PATH:

$ENV{PATH} .= ":/usr/local/bin:/usr/ucb";

Or use absolute paths to executables:

@output = `/usr/local/bin/myprog -a foo.dat`;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-61

It's not finding my file!
CGI scripting / FAQs

Same problem as above:

@out = `/c/spot -rUN spot.run`;

Depends on the current working directory. Don't do that.
Use absolute paths:

@out = `/c/spot -rUN /run/spot.run`;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-62

How do I redirect to another page?
CGI scripting / FAQs

Just output a Location HTTP header, instead of the Content-
type header:

print "Location: $otherURL\r\n\r\n";
exit 0;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-63

How do I handle different browsers?
CGI scripting / FAQs

Use the HTTP_USER_AGENT environment variable:

$browser = $ENV{'HTTP_USER_AGENT'};
if ($browser =~ /Mozilla/) {
 # Netscape code...
}
else {
 # Non-Netscape code...
}

You're better off doing all this at the start to figure out
what features the user agent has... then set global flags like
$Agent{HAS_TABLES} = 1.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-64

How do I mail the form data?
CGI scripting / FAQs

$cgif = new CGI::Form; # a Perl CGI module

$from = $cgif->param('from'); # sender e-address
$name = $cgif->param('name'); # sender name
$subject = $cgif->param('subject'); # subject
$message = $cgif->param('message'); # message body

open SENDMAIL, "|/usr/bin/sendmail -t -i" or die "$!";
print SENDMAIL <<EOF;
From: $from <$name>
To: me\@myhost.com
Reply-To: $from
Subject: $subject

$message
EOF
close SENDMAIL;
die "sendmail failed" if ($? >> 8);

Here's a real simple script
for doing that. Make sure
to edit the path to sendmail
for your system, as well as
the destination!

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-65

How can I tell who accessed me?
CGI scripting / FAQs

HTTP_FROM Theoretically set to the email address of the user. Many
browsers do not set it at all, and ones that do allow the
user to set it to anything. Unreliable.

REMOTE_USER Only set if secure authentication was used to access the
script.

REMOTE_IDENT Only set if server has contacted an IDENTD server on
the client machine... a slow, rare, and unreliable
operation.

REMOTE_HOST Will not identify the user specifically, but does provide
information about the site the user has connected from,
if the hostname was retrieved by the server.

REMOTE_ADDR The dotted-decimal IP address of the client machine.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-66

How secure are "password" fields?
CGI scripting / FAQ

They're not! The forms interface allows you to have a
"password" field, but it should not be used for anything
highly confidential.

All form data (including "password" fields) gets sent from
the browser to the server as plain text... not as encrypted
data.

If you want to solicit secure information, you need to use
a secure HTTP server.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-67

Is this really a security hole?
CGI scripting / FAQ

Consider the following bit of code, which grabs a user's form
field and uses it as a search pattern:

$pattern = $req->param('pattern');
@ans = `grep $pattern some.file`;

Harmless, right? Wrong. Consider what that shell line would
be if the user entered into the HTML form the pattern:

; cat /etc/passwd ;

Are you scared yet? No? How about:

; rm -fr / ;

Hmm?

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-68

Why use -T?
CGI scripting / FAQ

Fortunately, Perl prevents you from hurting yourself if you
just turn on taintchecking (-T).

Perl would then detect that $pattern is tainted (it
originates from outside the code) and would halt if...

– You attempt to pass $pattern into a shell.

– You attempt to use $pattern in the naming of a file.

Perl CGI scripts with taintchecking and strict are much safer
than their sh/C counterparts.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-69

So how do I run programs securely?
CGI scripting / FAQ

Avoid situations where a shell is involved. Shells interpret
metacharacters like ; and |, and unless you know exactly
what you're doing, untainting strange input just because
you've "quoted" it can be dangerous.

Code that "grep" example like this:
if (open(GREP, "-|")) { # open forks; we're the parent
 @ans = <GREP>;
}
else { # open forked; we're the child
 exec("/usr/local/bin/grep", $user_field, "some.file")
 || die "Error exec'ing command", "\n";
}
close(GREP);

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-70

PROJECT
• Write a Perl CGI script which serves as a gateway to the

finger program (or, if you like, the man program). If
invoked with no parameters, it should serve a simple
HTML form; with parameters, it should invoke finger
(man) appropriately.

• Start off with just plain text output. When you get it to
work, use Perl's text-processing power to create very
pretty HTML output instead.

 CGI scripting

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-71

TRICKS OF THE TRADE

There are a few of issues that
all CGI developers must face
to develop solid code.

Here are some good tips and
strategies.

• Page buffering

• Trace logging

CGI scripting

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-72

Tired of seeing this, yet?

500 Server Error

The server encountered an internal error or
misconfiguration. Please alert the server administrator at
this host.

CGI scripting / Tricks

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-73

Page-buffering

• Output to STDOUT often goes directly to the client's
browser... but what if you've output half a page of
HTML, and an error occurs? Can't retract output!

• One solution I came up with is page-buffering...

CGI scripting / Tricks

STDOUT

Simple
CGI
script
Simple

CGI script

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-74

Page-buffering
CGI scripting / Tricks

1. Duplicate STDOUT into a new filehandle, CLIENT.

2. Redirect STDOUT to a tmpfile() temp file... the page buffer.

3. If script finishes normally, rewind page buffer, write
contents to CLIENT, and exit.

4. If an error occurs, discard page buffer, write error message
to CLIENT (I call it the script's dying gasp), and exit.

CLIENT STDOUT

Buffered
CGI
script

page
buffer

Buffered
CGI script

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-75

Using STDERR
• As noted, STDERR normally points to the HTTPD error

log, and can be used for general logging:

sub debug { print STDERR "$0 debug: ", @_, "\n" }
debug "Look for me in the error log!";

• One (sloppy) way to catch errors is to "dup" STDERR to
STDOUT early on in your script (after outputting the valid
HTTP headers, of course!):

open(STDERR, ">&STDOUT");

This redirects all of the error messages to STDOUT (the
client). But it's messy, and requires that you know early on
what HTTP header you want to output!

CGI scripting / Tricks

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-76

Trace logs

• Nice to be able to generate temporary debugging info
during execution of a script... a trace log:

– If script exits okay, discard the trace log.

– If script dies, output the trace log in the "dying gasp".

• Use same basic scheme as page-buffering:

– Open log at start, using tmpfile(). Maybe even redirect
STDERR to it (though you can lose warnings this way).

– Write entries to it.

– If script dies, rewind trace log, and output.

CGI scripting / Tricks

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-77

WWW CLIENTING

Just as many of us need
systems to provide
information, some of us need
systems to download it.

• URI modules

• LWP modules

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-78

URI::Escape
WWW Clienting

Encode/decode query strings. Useful for generating URLs
to CGI scripts.

use URI::Escape;

$query = "10% is enough\n";
$safe = uri_escape($query);
$verysafe = uri_escape($query, "\0-\377");
print "http://somehost/script?$safe";

$str = uri_unescape($safe);

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-79

URI::URL
WWW Clienting

Objects representing URLs of various flavors. Nice if you
hate parsing URLs with regexps...

use URI::URL;

$raw = 'http://enterprise.sf.ufp:1701/~picard';
$url = new URI::URL $raw; # or, url($raw)

$scheme = $url->scheme; # http
$host = $url->host; # enterprise.sf.ufp
$port = $url->port; # 1701
$path = $url->path; # /~picard

$url->host('ncc1701d.sf.ufp');
print $url->as_string; # http://ncc1701d...

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-80

LWP
WWW Clienting

• The Library for Web Programming in Perl.

• Collection of many different modules, which can be used
to build Perl "User Agents" (spiders, robots, etc.)

• Design allows support for new protocols to be added as
simple "plug-ins"... just write an LWP::Protocol::xyz
module to spec.

http

LWP::Protocol

ftp gopher ...

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-81

LWP::Simple
WWW Clientingwritten by

Gisle Aas

Very simple interface to the LWP client modules. Good
for when you "just want to download a file by its URL":

use LWP::Simple;

Download data to a scalar (careful of big files!!):
$data = get "http://voyager.sf.ufp/emh/doctor.tar";

Download data into a file (much better):
$code = getstore("http://voyager.sf.ufp/emh/doc.tar",
 "the-doctor");

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-82

LWP::UserAgent
WWW Clientingwritten by

Gisle Aas

Object-oriented interface to the LWP client modules.
Good for complex client activities.

use LWP::UserAgent;

Create a user agent:
$ua = new LWP::UserAgent;

Create a request object:
my $request = new HTTP::Request 'GET', $url;

Submit the request, grabbing a response object:
my $response = $ua->request($request);

Extract and print the content data:
print $response->content;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-83

MAIL AND MIME

Often, one needs to write a
program that is able to send
mail... maybe even read it.

Newer email developments
(like MIME) have made email
processing more rewarding...
and challenging.

• The Mail:: modules

• The MIME:: modules

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-84

PROJECT
• Design a class, Mail::Msg, whose instances are outgoing

mail messages. You should be able to:

– Create a new instance.

– Set up the destination(s), subject line, return address,
etc.

– Dump the contents of a file to it.

– Sign it with your signature file.

– Send it.

• You may assume Unix.

 Mail

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-85

Mail-Tools
Mail and MIMEwritten by

Graham
Barr

• Tool kit providing almost all you need to be able to...

– Send email

– Parse email headers (good for mail servers)

– Manage .mailcap files

• Basically, the Mail:: modules...

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-86

Mail::Send
Mail and MIME

Object-oriented way of constructing outgoing email:
use Mail::Send;

Create message object:
$msg = new Mail::Send;

Set header fields:
$msg->to('sisko@ds9.sf.ufp');
$msg->cc('worf@ds9.sf.ufp');
$msg->subject('Still on for Poker Thursday?');
$msg->set('From', 'god@universe.infi.net'); # fake!

Print the message:
$fh = $msg->open;
print $fh "Remember: Worf's turn to buy beer!";
$fh->close; # complete message and send it

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-87

Setting Mail::Send's mailer
Mail and MIME

Uses Mail::Mailer to do the actual sending. This example
uses sendmail instead of mail:

Set up the path to sendmail:
$Mail::Mailer::Mailers{'sendmail'} =
 '/usr/sbin/sendmail';

Print the message:
$fh = $msg->open("sendmail");
print $fh "Remember: Worf's turn to buy beer!";
$fh->close; # complete message and send it

Interesting note: that filehandle $fh is actually a Mail::Mailer::sendmail object.

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-88

Mail::Header
Mail and MIME

For building or parsing email headers. Useful if you're
developing an email gateway, or sending mail the hard
way...

Create a new header from input:
$head = new Mail::Header *STDIN;

Extract information:
my $sender = $head->get('sender',0);
my $subject = $head->get('subject', 0);
my @history = $head->get('received');

Modify and output:
$head->replace('to', $newuser);
$head->print(*STDOUT);

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-89

MIME-Tools
Mail and MIME

• Tool kit providing almost all you need to be able to...

– Parse, decode, and save single- or multipart MIME
messages.

– Construct and output single- or multipart MIME
messages (yes, with binary attachments).

• Newest release (2.0) the result of collaboration with
Mail-Tools author on new Mail-Tools modules (1.06)
that were more amenable to subclassing.

written by
Eryq!
:-)

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-90

The Mail/MIME Hierarchy
Mail and MIME

Mail::
Header

Mail::
Internet

MIME::
Parser

MIME::
Head

MIME::
Entity

MIME::
Decoder

MIME::
Decoder::

Base64

MIME::
Decoder::

QuotedPrint

Mail::
Field

MIME::
Field::

ContType

MIME::
Field::

ConTraEn

MIME::
Field::

ParamVal

... ...

MIME::
Lite

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-91

Parsing MIME messages
Mail and MIME

The MIME::Parser module can be used out of the box to
parse a message. Parts can go to file or stay in core:

use MIME::Parser;

Create parser, and set the output directory:
my $parser = new MIME::Parser;
$parser->output_dir("$ENV{HOME}/mimemail");

Parse input, creating a MIME entity:
$entity = $parser->parse(*STDIN) || die "no MIME";

Take a look at the top-level entity:
$entity->dump_skeleton;

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-92

Other MIME components
Mail and MIME

• The MIME::Base64 and MIME::QuotedPrint modules (by
Gisle Aas) do the encoding/decoding work of this
toolkit, and can be used separately.

• The MIME::Decoder class may be used to
encode/decode streams:

A filter to encode in base64:
use MIME::Decoder;
$decoder = new MIME::Decoder 'base64'

or die "unsupported";
 $decoder->encode(*STDIN, *STDOUT);

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-93

Creating MIME messages
Mail and MIME

Create the top-level, and set up the mail headers:
$top = build MIME::Entity Type=>"multipart/mixed";
$top->head->add('from', "me\@myhost.com");
$top->head->add('to', "you\@yourhost.com");
$top->head->add('subject', "Hello, nurse!");

Attachment #1: a simple text document:
$top->attach(Path=>"./testin/short.txt");

Attachment #2: a GIF file:
$top->attach(Path => "./docs/mime-sm.gif",
 Type => "image/gif",
 Encoding => "base64");

Attachment #3: some literal text:
$top->attach(Data=>$message);

Send it:
open MAIL, "| /usr/lib/sendmail -t -oi -oem" or die "open: $!";
$top->print(*MAIL);
close MAIL

11/18/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-94

FINAL PROJECT
Go to the Perl5 Module List and scan down it, keeping in
mind the projects you are currently working on.

Somewhere in that list is a hole... a module that you feel
should be there, but isn't. A module you could really use.
One which many of your colleagues could use, as well.

Propose that module to comp.lang.perl.modules.

Then write it.

Then release it.

Help save the world.

