
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 5: Data

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

Input and output
Data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

Filehandles

• When you open a file, you give Perl a name by which you will
refer to that file in the future. This name is the filehandle.

• Filehandles are (often) ordinary text strings, typically in ALL
CAPS.

• Perl predefines the special filehandles STDIN, STDOUT, and
STDERR.

open LOG, ">/var/log/test.log";
print LOG "Processing begun\n";
close LOG;

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

Passing filehandles around

• When when you want to pass a filehandle into a user-defined
subroutine in Perl, it is best to do so as a typeglob reference.
Basically, that means prepending a * to the filehandle name...
like this:

• Don't worry about what this means yet. Just do it.
You'll run into far fewer problems that way. Think of it as one
more piece of bizzare Perl syntax, unique to filehandles.

open LOG, ">/var/log/test.log";
message(*LOG, 'ERR', $errstr);

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

open(FILEHANDLE, EXPR)

• Opens FILEHANDLE onto file/pipe given by the
EXPRession, which may be evaluate to the following...

filename Open filename for reading
<filename Open filename for reading

>filename Open filename for writing, erasing existing contents

>>filename Open filename for appending

|command Open pipe for writing: run command so that output
written to the filehandle is piped into command's stdin

command| Open pipe for reading: run command so that output
to its stdout may be read from the filehandle

- Open on STDIN (like C's fdopen(0))

>- Open on STDOUT (like C's fdopen(1))

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

open() (cont'd)

• Putting a + in front of <, >, or >>, means that read/write
access is requested... beware which form you choose!

open READFIRST, "+<ReadThenOverwrite.dat";
open WRITEFIRST, "+>OverwriteThenRead.dat";

• To "duplicate" a filehandle, use the form &filehandle
in place of filename after any of the 6 <, >, or >>
forms:

Redirect STDOUT, but save it:
open USER, ">&STDOUT" or die "open: $!";
open STDOUT, ">tmp.out" or die "open: $!";

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

open() (cont'd)

• open() returns nonzero on success, undefined
otherwise. Always check the return value... a lot can go
wrong!

• On failure, check $! for the reason:

open LOG, "$file" or die "open $file: $!";

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

close(FILEHANDLE)

• Close file or pipe associated with FILEHANDLE, and reset
the input-line counter ($.)

• Opening an already-open filehandle causes the existing
file to be closed first (but leaves $. alone!)

• Closing a pipe waits for the process to finish, and puts
execution status into the $? variable:

open CMD, "| somecommand -i -o -u";
print CMD "Command data\n";
close CMD;
$exit = ($? >> 8); # get exit status
die "command failed: $exit" if ($exit != 0);

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

print(FILEHANDLE LIST)

• Print a LIST of strings to the given FILEHANDLE

– If FILEHANDLE not given, outputs to the currently-selected
filehandle (default: STDOUT)

– If LIST is also not given, outputs the string in $_

There is no comma after the FILEHANDLE !

print;
print $a, $b, $c;
print @a, $b, @c;
print STDOUT "Hi!\n";
print LOG "ERROR:", $message, "\n";
print LOG $status, ' ', @items;

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

printf(FILEHANDLE LIST)

• Print a formatted string to the given FILEHANDLE , just like
in C.

• First element of the list is the format string, which uses
basically the same format directives as in C.

• Equivalent to... print FILEHANDLE sprintf(LIST)

printf LOG "Date: %02d/%02d/%04d\n",
$day, $mon, $yr;

Data / Input and output

a string
function

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

select(FILEHANDLE)

• Select the given FILEHANDLE for output:

–write() or print() without a filehandle will now use this
filehandle

– Variables which pertain to currently-selected filehandle
will now pertain to this filehandle

• The previously-selected filehandle is returned

open LOG, ">>captains.log";
$oldfh = select LOG; # save old
print "Stardate $stardate:\n"; # goes to LOG
print @msgs, "\n"; # goes to LOG
select $oldfh; # restore old

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

The <> operator

• In a scalar context, the <> operator reads and returns
a single line from a filehandle:

The newline character is not removed automatically
from the end of the line!

• Returns undef on end of file, so loops are easy!

open LS, "ls -l |" or die "open: $!";
while (defined($line = <LS>)) {

print $line;
}
close LS;

Data / Input and output / <>

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

Why test <> for defined?

• Since the newline isn't removed, it appears that all lines
of a valid text file would evaluate true, and EOF is false:

• So why bother to test <> for defined()? Why not...

• Answer: if your text file happens to end in a line
consisting of a single 0 and no newline, the above
loop will quit without processing that last line!

while ($line = <LS>) { ... }

Data / Input and output / <>

abc\n
\n
0\n

true!
true!
true!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

<> inside "while"
The <> operator is a good friend of while... if a while test
consists only of the <> invocation, the value is
automagically put in $_ and tested for being defined:

• These are all equivalent, and pass STDIN to STDOUT:

while (<LS>) { ... }

while (defined($_ = <STDIN>)) { print; }
while (<STDIN>) { print; }
for (; <STDIN>;) { print; }
print while defined($_ = <STDIN>);
print while <STDIN>;

Data / Input and output / <>

while (defined($_ = <LS>)) { ... }

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

Using <> in list context
If the <> operator is used in a list context, a list
consisting of all the input lines is returned, one line per
list element:

It's easy to chew up memory this way, so use with extreme
care!

open UNSORTED, "unsorted.dat";
@sorted = sort <UNSORTED>;
close UNSORTED;

Data / Input and output / <>

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

<> and the "null filehandle"
The null filehandle <> can be used to emulate the behavior
of sed and awk, and to create standard Unix "filters":

@ARGV or unshift(@ARGV, '-');
while ($ARGV = shift @ARGV) {

open(ARGV, $ARGV);
while (<ARGV>) {

process current line
}

}

while (<>) {
process current line

}
not exactly
the same,
but almost

Data / Input and output / <>

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Other things inside <>
• If the string inside the <> is a scalar variable, then that

scalar contains the name of the actual filehandle to read:

• If the string inside the <> is not a filehandle, it is
interpreted as a filename pattern to be globbed. The "lines"
returned are the matching filenames:

But use readdir() instead... it's more efficient and reliable

$fh = 'STDIN';
while (<$fh>) { ... }

chmod 0644, <*.c>;

Data / Input and output / <>

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

chop(VAR) / chomp(VAR)
• chop() chops off the last character of a string and returns

the character. It was once used to remove the newline at
the end of an input line.

• chomp() is safer: it removes the input record separator
(usually a newline), and only if the string actually ends in that
separator.

• Without arguments, both chop and chomp work on $_

while (<LS>) {
chomp;
print "Next line: <$_>\n";

}

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

$. ($INPUT_LINE_NUMBER)

• Current input line number of the last filehandle that was
read.

while (<STDIN>) {
 /^\s/ and print "Leading space on line $.\n";

}

• Read-only

• Mnemonic (Larry’s): many Unix programs use . for the
current line number.

• Mnemonic (mine): not the input line itself... just the line
number, period!

Data / Input and output / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

$/ ($INPUT_RECORD_SEPARATOR)

• Boundary on which the <> operator will read "records"

– Defaults to "\n", so normal "records" are single lines

– If set to special "", will split input stream on 2 or more
consecutive blank lines (not the same as "\n\n"!)

– If undefined, input stream is not split at all. Use with
extreme care... this can really chew up memory!
undef $/;
$everything = <STDIN>; # slurp in entire input stream!

• Mnemonic: / delimits boundaries when quoting poetry

Data / Input and output / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

$| ($OUTPUT_AUTOFLUSH)

• Set to nonzero to force a flush on the currently-selected
filehandle after every write()/print(). Default is 0.

• Useful when sending output to a pipe, where you don't
want to have to deal with buffering.

open PIPE, "| program";
$oldfh = select PIPE; $| = 1; select $oldfh;
print PIPE "Send this now!";
print PIPE "Send THIS now!";

• Mnemonic: when you want your pipes to be piping hot

Data / Input and output / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

File test operators

• Perl provides many sh-like unary operators for testing
files, all of the form (-X filename). Here are just a few...

-r is file readable by euid/egid?
-w is file writable by euid/egid?
-x is file executable by euid/egid?
-o is file owned by euid/egid?
-M age of file in days when script began

 -e does file exist? -s file size
-f is file a plain file? -d is file a directory?
-l is file a symbolic link? -S is file a socket?

(-x $file) or die;

Data / Input and output

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

Binary data
Data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

read(FILEHANDLE, SCALAR, LENGTH)

• Reads LENGTH bytes from the given FILEHANDLE, and puts
them into SCALAR.

• Returns actual number of bytes read, or undefined on error.

• Buffered: can be intermixed with <>.

Data / Binary data

Read a stream of 54-byte records...
while (!eof(STDIN)) {

(read(STDIN, $buf, 54) == 54) or
die "couldn't get record!";

...current record is in $buf...
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

write()

GOTCHA! Unfortunately, write() is not the
counterpart of read() you were expecting it to be. It
does something else entirely.

• To write an arbitrary number of bytes to a filehandle from a
scalar, just use print()... with substr() if you need to:

Write a stream of 54-byte records...
while (1) {
 # ...current record is in $buf; print first 54 bytes:
 print STDOUT substr($buf, 0, 54);
}

Data / Binary data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

seek(FILEHANDLE, POS, WHENCE)

• Randomly positions the file pointer for FILEHANDLE, like
fseek() in stdio. It is positioned POS bytes from WHENCE, as
follows...

Integer POSIX
WHENCE WHENCE Means to position pointer to...

0 SEEK_SET POS bytes after start of file
1 SEEK_CUR POS bytes after current position
2 SEEK_END POS bytes after end of file

Read bytes 100 through 199 inclusive...
open DATA, $datafile or die "open: $!";
seek DATA, 100, 0;
read DATA, $data, 100;

Data / Binary data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

pack(TEMPLATE, LIST)

• Kind of like sprintf()... takes a LIST of values and packs them
into a single scalar, using the characters in TEMPLATE to
determine how each value is to be packaged.

$s = pack('cccc', 65,66,67,68); # "ABCD"
$s = pack('c4', 65,66,67,68); # same
$s = pack('ccxcc',65,66,67,68); # "AB\0CD"

$s = pack('a5', "cat"); # "cat\0\0"
$s = pack('A5', "cat"); # "cat "
$s = pack('aa', "cat", "dog"); # "cd"

$n = pack('S',1); # little-endian: "\1\0"
 # big-endian: "\0\1"

Data / Binary data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

unpack(TEMPLATE, EXPR)

• Reverse of pack()... takes an EXPR evaluating to a scalar and
unpacks it into a list of values, using the characters in
TEMPLATE to determine how each value is to be unpacked.

• The TEMPLATE has the same format as in pack().

@A = unpack('cccc', "ABCD"); # (65,66,67,68)
@A = unpack('c4', "ABCD"); # same

Data / Binary data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

Special variables
Data

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

$$ ($PROCESS_ID)

• The process number of the Perl running this script.

print "My pid = $$\n";

• Mnemonic (Larry’s): same as sh/csh

• Mnemonic (mine): earning $$ is a painful process

Data / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

$0 ($PROGRAM_NAME)

• The name of the file containing the Perl script being
executed.

• Assigning to $0 modifies the area that the ps program
sees.

• Mnemonic (Larry’s): same as sh/ksh

• Mnemonic (mine): Oh... that’s your name!

Data / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

$] ($PERL_VERSION)

• In a string context, the string printed out when you say
"perl -v".

• In a numeric context, returns version + patchlevel/1000

warn "No checksumming!\n" if $] < 3.019;

• Mnemonic: is this version of Perl in the right bracket?

Data / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

@ARGV

• The command-line arguments intended for the script

• Equivalent to argv[1..n] in C

$ARGV[0] is not the program name: it's the first
argument! Use $0 to get the program name.

Data / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

%ENV

• Hash representing the environment.

• Access it to perform a getenv():
$homedir = $ENV{'HOME'};

• Modify it to perform a putenv(), which will affect the
environment for the current process and any child
processes:

$ENV{'PATH'} .= ':/usr/special:/usr/games';
system("someprog -a");

Data / Special variables

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

%SIG

• Used to set signal handlers:
sub handler {
 die "Caught a signal: shutting down";
}

$SIG{'INT'} = 'handler'; # old style
$SIG{'HUP'} = \&handler; # preferred

• Also used to set some internal hooks...

$SIG{__WARN__} = \&warning_handler;
 $SIG{__DIE__} = \&fatal_error_handler;

Data / Special variables

