
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 1: Basics

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

Introduction
Basics

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

What is Perl?

• An interpreted language, based on awk, sed, sh, and C,
with some BASIC thrown in.

–Written originally by Larry Wall

– Augmented by Tom Christiansen and Randal Schwartz

• The language of choice for writing CGI scripts for the
World Wide Web.

• Perl actually stands for “Pathetically Eclectic Rubbish Lister,”
but don’t tell anyone I told you that -- Larry Wall

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

What is it good for?

• Report generation (e.g., log file analysis)

• System administration

• Email processing

• WWW applications (e.g., CGI scripts)

• Document generation/conversion (e.g., SGML translation)

• ...and much, much more...

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

What makes it so darn great?

• Powerful regular expression matching/replacement built
right into the language (like sed and awk)

• Variable-sized strings, arrays, and hashtables (like Lisp)

• Arbitrarily-nested data structures

• Object-oriented paradigm

• You can dynamically load/use your own C/C++ libraries

• You can “tie” data structures to underlying databases

• And much, much more!

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

Yuck! Is that Perl?!?

• Perl balances its incredibly powerful and concise
language with a syntax that is not of this earth...

• You will hate it.

• You will complain incessantly about it.

• But... comparing Perl syntax to C syntax is a lot like
comparing a Boeing737 cockpit to a Ford Escort. Yeah,
the Ford's easier to drive, but once you learn to fly the
Boeing, you can go anywhere, fast...

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

Oh yeah? Prove it.
• Okay... here's a Perl program which takes as arguments a list of filenames

from the command line, and extracts “probable” email addresses.
Printout is one address per line, with each address preceded by the
filename and line number where it was found. If no command line args,
gets input from stdin.

• Program is about 100 characters long. It took me one minute to write.

#!/usr/bin/perl -w
while (<>) {

while (m/\w+\@\w[\w\.]*\w/ig) {
print "$ARGV $.: $&\n";

}
close ARGV if eof;

}

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

The Perl philosophy

There's more than
one way to do it.

(TMTOWTDI)

Basics / Introduction

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Perl syntax
Basics

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

Hello, world!

% perl hello.pl
Hello, world!
%

In file "hello.pl", put this...

Then, do this at the shell prompt (assuming Unix):

print "Hello, world!\n";

Basics / Perl syntax

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

#!/usr/bin/perl -w
print "Hello, world!\n";

Hello, world... the program!

% chmod +x hello
% ./hello
Hello, world!
%

In file "hello", put this...

Then, do this at the shell prompt:

Basics / Perl syntax

Make "hello"
executable

This should be the
path to Perl on

your system The -w turns
on warnings:
use it always!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

Anatomy of a Perl script

• A Perl script consists of a sequence of declarations and
statements... hopefully, with some comments too...

#!/usr/bin/perl -w
Comments go from the # to the end of line

A subroutine declaration:
sub sum {
 my ($a, $b) = @_; # gets two args
 return $a + $b; # returns the sum
}

A statement, ending in a semicolon:
print sum(1700, 1);

Basics / Perl syntax

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

Simple statements

• A simple statement is an EXPRession evaluated for its
side-effects (e.g., variable assignment). It should be
terminated by a semicolon:

$total = sum(1700, 1);

• Any simple statement may be followed by a single
modifier. Possible modifiers are:

if EXPR while EXPR
unless EXPR until EXPR

add_stuff() until ($total > 2000);

Basics / Perl syntax

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

Compound statements

• A sequence of statements that defines a scope is called a
block. BLOCKs are usually delimited by curly braces {}.

• These compound statements are for control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK
LABEL while EXPR BLOCK
LABEL while EXPR BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL BLOCK continue BLOCK

Curly braces are required in if, while, etc. constructs!

Basics / Perl syntax

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

Basic data types
Basics

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

Variables

• Variables in Perl have names of this form:

• Variable names are case-sensitive.

• Variable names are explicitly typed, and there are three
basic types:

$x a scalar: a simple thing: text string, number, etc.
@x an array: holds zero or more scalars
%x a hash: a "lookup table" that maps keys to values

Basics / Basic data types

First character is any of:
A-Z, a-z, _

Zero or more additional characters in:
A-Z, a-z, 0-9, _

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Types define namespaces
Scalars, arrays, hashes (and subroutines) all exist in a
separate namespace... so $x, @x , and %x are all
different variables...

But avoid doing this in practice... it's very
confusing!

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

Scalars

• Scalars hold strings of zero or more bytes

• Scalar variables are signified by a $ before the variable
name; e.g., $name

• Use scalars to hold:

– Text strings $msg = "Hello, world!\n";

– Integers $deg = 360;

– Floating point numbers $pi = 3.14159;

– Arbitrary binary data $data = "\012\000\011";

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

Scalar Variables (cont'd)

Scalar variables grow dynamically as you add to them.
No need to allocate the memory yourself!

$alpha = "abc";
$alpha .= "defghijk";
$alpha .= "lmnopqrstuvwxyz";
$alpha = $alpha x 1024;

Basics / Basic data types

.= adds text to the end of a string
x duplicates a string n times

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

Numeric Literals

• Integer numeric literals:

42 decimal integer
052 octal integer (has a leading 0)
0x2A hexadecimal integer (has a leading 0x)
2_267_709 decimal integer, with underlines for clarity

• Floating-point numeric literals:

42.0 floating point
4.2E1 scientific notation (E or e)
4.2E+1 explicit + is okay (and so is a -)
.42E+2 any floating point before the E is okay
4.2E+010 that's not an octal exponent: it's ten!

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

String Literals, Double-Quoted

• Double-quoted string literals are much like those in C,
with \-escapes recognized:

\n newline \377 byte value (3 octal digits)
\r return \xFF byte value (x + 2 hex digits)
\t tab \c[control character (c + 1 char)
\f form feed \e escape
\\ a backslash \" quote char (if " is quote char)

...and many more...
print "Hello,\n\"world\"!";

Hello,
"world"!

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

String Literals, Double-Quoted

• In double-quoted strings, scalar (and array) variables are
interpolated, meaning that their values are inserted:

• To suppress interpolation, put a \ in front of the $ (or @):

$name = "Jim";
print "He's dead, $name!\n";

He's dead, Jim!

$fee = 300;
print "That'll be \$$fee.\n";

That'll be $300.

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

Escapes for interpolation

• Certain escape sequences give you control over how
Perl will interpolate scalars into your strings:

\l lowercase next char \u uppercase next char
\L lowercase until \E \U uppercase until \E
\Q quote regular expression metacharacters until \E
\E end case modification

$first = "james";
$last = "kirk";
print "Hello, \u$first \U$last\E!\n";

Hello, James KIRK!

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

More on interpolation

• If you want to interpolate a scalar variable into a string,
but the character after the variable name can be
mistaken for part of the variable name, you can use { }
to distinguish the variable name:

$thing = "tribble";
print "Too many ${thing}s!";

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

String Literals, Here-is

• For very long strings, especially ones with newlines, you
may find the here-is syntax more to your liking:

print <<EOF;
The string begins on this line, and can
have $variables, blank lines, etc...

...and it doesn't end until a line containing
nothing more than the token after the <<
("EOF", in this case) is encountered.
EOF

$msg = <<STREND;
Basically, it works like a funny double-quote.
STREND

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

String Literals, Single Quoted

• Single-quoted string literals are similar, except that...

– A backslash (\) may only be used to escape the quote
character (usually ') or another backslash

– Variables are not interpolated

$name = "Scotty";
print '\\Hello, $name!\n';

\Hello, $name!\n

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

String Literals, Barewords

• Strings consisting solely of upper- and lowercase
characters and underscores may be used without quotes
wherever a string literal is expected:

$level = DEBUG; # same as if we used 'DEBUG'

• Always avoid all-lowercase barewords: they may
conflict with future reserved words (Perl will warn you):

$level = debug; # may someday be a reserved word!

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

Beware the Bare

• Beware: if you use a bareword with the same name as
a function, Perl will call the function:

print "!", Debug, "\n"; # prints !Debug
sub Debug { return 123 } # declares Debug()
print "!", Debug, "\n"; # prints !123

• Avoid barewords for now, and in general... later on,
we'll show you a few places that you can use them safely
and conveniently.

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

The empty string

• If you follow a single- or double-quote character
immediately by that same quote character, you get an
empty string. It has a length of 0.

$name = ""; # double-quote, double-quote
$name = ''; # single-quote, single-quote

• This is not the same as the "undefined" value which a
scalar has before you assign to it.

Basics / Basic data types

Perl scalar C string (char *)
undefined  NULL pointer
empty string  non-NULL pointer to a \000 char

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

The undefined value

• If you use a scalar variable before giving it a value, it has
the special value of undef

• You can assign the value explicitly:

$x = undef;# one way
undef $x; # another way

• You can also test for it:

if (defined($x)) { ... }

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

Using undefined

• When used in a string context (e.g., in concatenation or
printing), undef behaves like the empty string.

• When used in a numeric context (e.g., in addition),
undef behaves like zero.

• When used in a boolean context (e.g., in an "if" test),
undef is false.

• Perl will warn you if you use undef in a string or
numeric context.

Basics / Basic data types

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Boolean equivalents

• In a boolean context (e.g., inside an "if" test), here's what
the following scalar values behave as:

$value = "Scotty";
if ($value) {
 print "value is defined, nonempty, and nonzero\n";
}

Basics / Basic data types

1. Any string is true, except for the empty string and
the one-character string '0' (that's ASCII 0x30).

2. Any number is true, except for 0 (integer or float).

3. Any reference (pointer to an object) is true.

4. Any undefined value is false.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

Basic operators
Basics

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

Arithmetic operators

$a + 1 Addition
$a - 2 Subtraction
$a * 3 Multiplication
$a / 4 Division... note that if both sides are integers, then

integer division will be done; else, floating-point
division will be done.

$a % 5 Modulus: in this case, the remainder when $a is
divided by 5 using integer division.

$a ** 6 Exponentiation (negative / real exponents are ok!)
 -$a Negation

Basics / Basic operators / Numeric

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

Autoincrement/autodecrement

• The ++ and -- operators work on integers just as in C:

– If placed before a variable, they increment/decrement the
variable before returning the value.

– If placed after a variable, they increment/decrement the
variable after returning the value.

$i = 3;
$j = ++$i; # sets $i to 4, $j to 4

$i = 3;
$j = $i++; # sets $i to 4, $j to 3

Basics / Basic operators / Numeric

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

String autoincrement

If you autoincrement a scalar which has never been used in a
numeric context and whose value matches the pattern...

...the increment is done as a string, preserving each character
within its range, with carry:

• Autodecrement, however, is not magical!

print ++($i = '99'); # prints '100'
print ++($i = 'a0'); # prints 'a1'
print ++($i = 'Az'); # prints 'Ba'
print ++($i = 'zz'); # prints 'aaa'

Basics / Basic operators / Numeric

Zero or more of: A-Z, a-z Zero or more of: 0-9

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

Bitwise boolean operators
$a & $b Bitwise AND: a bit in result is on only if it is on in both

$a and $b.
$a | $b Bitwise OR: a bit in result is on only if it is on in either

$a or $b or both.
$a ^ $b Bitwise XOR: a bit in result is on only if it is on in

either $a or $b, but not both.
 ~$a Bitwise NOT: a bit in the result is on if it is off in $a

$a = 0xA5; # bits = 1010 0101
$b = 0x2B; # bits = 0010 1011
printf "%X ", $a & $b; # bits = 0010 0001 (x21)
printf "%X ", $a | $b; # bits = 1010 1111 (xAF)
printf "%X ", $a ^ $b; # bits = 1000 1110 (x8E)

Basics / Basic operators / Bitwise

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

Shift operators
$a << $b Left shift: returns value of $a with its bits shifted

left by the number of places specified by right
argument. Both arguments should be integers.

$a >> $b Right shift: returns value of $a with its bits shifted
right by the number of places specified by right
argument. Both arguments should be integers.

$a = 39; # bits = 00100111

printf "%d ", $a >> 1; # bits = 00010011 (19)
printf "%d ", $a >> 0; # bits = 00100111 (39)
printf "%d ", $a << 1; # bits = 01001110 (78)
printf "%d ", $a << 2; # bits = 10011100 (156)

Basics / Basic operators / Bitwise

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

Logical boolean operators

$a && $b Logical AND: true if both $a and $b are true
$a || $b Logical OR: true if either $a or $b is true
 !$a Logical NOT: true if $a is false

• Much like in C...

• Evaluation of && and ||is done left-to-right, and it
"short circuits" as soon as result can be determined.

• Unlike C, && and ||return the last value evaluated:

$home = getenv('HOME') ||
 getenv('LOGDIR') ||
 die "Couldn't get home directory!";

Basics / Basic operators / Logical

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-42

Short if-thens with &&/||

• Thanks to short-circuiting, && and || can be used as
shorthand for if-then constructs. This is very common:

Remember precedence! You may need to use
parentheses to prevent problems:

open(LOG, ">test.log") || die("no log file!");
$verbose && print LOG "Logging begun\n";

defined($x) || ($x = 'DEFAULT');

NO!

YES!

Basics / Basic operators / Logical

defined($x) || $x = 'DEFAULT';

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-43

• To avoid problems and enhance readability, there are
several boolean operators that make life easier:

• Now we can write:

Better if-thens with and/or

$a and $b Identical to &&, but with lower precedence
$a or $b Identical to ||, but with lower precedence
$a xor $b Exclusive-or, with low precedence
 not $a Identical to !, but with lower precedence

defined($x) or $x = 'DEFAULT';

Basics / Basic operators / Logical

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-44

Numeric relational operators

$a < $b Numeric "less-than"
$a > $b Numeric "greater-than"
$a <= $b Numeric "less-than-or-equal"
$a >= $b Numeric "greater-than-or-equal"
$a == $b Numeric equality
$a != $b Numeric inequality
$a <=> $b Numeric comparison: returns -1, 0, or 1...

Basics / Basic operators / Logical

if: then: result:
$a < $b result < 0 -1
$a = $b result = 0 0
$a > $b result > 0 1

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-45

String relational operators

$a lt $b String "less-than"
$a gt $b String "greater-than"
$a le $b String "less-than-or-equal"
$a ge $b String "greater-than-or-equal"
$a eq $b String equality
$a ne $b String inequality
$a cmp $b String comparison: returns -1, 0, or 1...

Basics / Basic operators / Logical

if: then: result:
$a lt $b result < 0 -1
$a eq $b result = 0 0
$a gt $b result > 0 1

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-46

Using relational operators

$a = 42;
$b = 101;

print $a <=> $b, "\n"; # prints -1
print $a cmp $b, "\n"; # prints 1

NO!

Be careful! Only use the numeric relational operators
when comparing scalars with integer or floating point
values:

Note that the numeric operators can return very
different results from the string operators:

Basics / Basic operators / Logical

if ($name == 'Bones') {

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-47

Conditional operator

• Ternary "?:" works like an if-then-else:

boolean-test ? value-if-true : value-if-false

• For example:

$warpspeed = $emergency ? 9 : 1;

• Can also be assigned to if the second and third operands
are legal lvalues:

($useA ? $a : $b) = $value;

Basics / Basic operators / Logical

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-48

String operators
$a . $b Concatenation: returns single string consisting of

$a followed by $b.

$a x $b Repetition: returns single string consisting of $b
repetitions of $a. The left operand ($a) is the
string, and the right operand ($b) must be an
integer.

print '-' x 80; # print a row of 80 dashes

$a = "hello";
$b = "world";
$c = $a . '*' . $b; # sets $c to "hello*world"

Basics / Basic operators / String

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-49

Quote operators

• Sometimes, using "standard" quotes is awkward:
print "";

• But in Perl, you can use the generic quote operators,
and choose your own quote character:

print qq!!;

print qq();

print qq<>;

• Note: the left-paren-like quote characters (, [, <, { are
terminated by their counterparts, and they must balance!

Basics / Basic operators / String

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-50

Quote operators

• Perl supplies the following generic quote operators:

Customary Generic Meaning Interpolates?
'' q{} Literal no
"" qq{} Literal yes
`` qx{} Command yes

qw{} Word list no
// m{} Pattern match yes

 s{}{} Substitution yes
tr{}{} Translation no

• You can use any character in place of the { and }, but
remember: the following must be in balanced pairs:

{} () <> []

Basics / Basic operators / String

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-51

Assignment operators

• Binary = is the ordinary assignment operator.

• Can be coupled with other operators, as in C:

$a += 2 is equivalent to $a = $a + 2

• Recognized are:

• All have the same precedence

**= += *= &= <<= &&=
-= /= |= >>= ||=
.= %= ^=

X=

Basics / Basic operators

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-52

Range operator, list context

• In a list context (e.g., assigning to an array), binary ".."
returns an array of values from the left to right operand:

@numbers = (1 .. 100); # array of 100 elements

• Uses magical autoincrement if operands are strings:
@alphas = ('A'..'Z', 'a'..'z');

• Can be used in foreach loops:

foreach (1 .. 100) { print $_, "\n"; }

Be careful, though... it creates a temporary array, so it
can burn a lot of memory (consider 1..1000000)!

Basics / Basic operators

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-53

Range operator, scalar context

• In a scalar context (e.g., inside an if condition), binary
".." returns a boolean which can be used as a range test:

– Initially... FALSE ...until left operand becomes TRUE

– Then stays... TRUE ...until right operand becomes TRUE

– Then... FALSE ...again

• If either operand is a numeric literal, operand is implicitly
compared to "$." (the current line number):

if (101 .. 200) { print; } # print lines 101..200

if ((101 <= $.) && ($. <= 200)) { print; }

Basics / Basic operators

